【饱和蒸气压】

饱和蒸气的压强。它与液体的种类、体积及温度有关。每一种液体在一定的温度下有一定的饱和气压,而不同种类液体的饱和气压却不相同。由于液体分子的内聚力越小,飞出液面的分子数就越多。为了要使飞回液体的分子数和飞出液面的分子数相等,即达到动态平衡,液面上蒸气的密度就必须大些,但是,当液面上蒸气的密度大时,它的压强也就增大了。例如,乙醚的内聚力最小,所以它的饱和蒸气压就最大。

在一定的温度下,同一种液体的饱和气压和饱和气所占的体积没有关系。因为在一定的温度下,如果饱和气的体积增大,则蒸气的密度就要变小。因此,在单位时间飞回液面的分子数就要少于飞出液面的分子数。这样,蒸气将处于未饱和状态,于是,液体又要继续蒸发,直到蒸汽处于饱和状态,即达到动态平衡为止。也就是说,蒸气的体积增大时,由于继续蒸发,蒸气的质量增加了,而蒸气的密度却保持不变。反之,在一定的温度下,减小饱和气的体积时,蒸汽的密度变大,单位时间内飞回液面的分子数多于飞出液面的分子数。这样一部分蒸气就开始凝结,直到恢复了原有的饱和值时才停止。总之,在一定的温度下,增大或减小饱和气的体积时,它的质量也随着增加或减少,而它的密度却保持不变,所以它的饱和气压也就保持不变。

液体的饱和气压随温度的升高而变大。由于饱和气体的压强跟它单位体积内的蒸气分子个数以及蒸气分子速度有关。在液体温度升高的时候, 液体分子的平均动能变大,每秒钟飞出液面的分子数增多,因而饱和蒸汽的密度变大,单位体积空间内饱和蒸气的质量也增加了。同时,由于温度的升高,蒸汽分子运动的平均速度也变大,这就使饱和蒸气每秒撞击液面或容器壁的次数增多,每次撞击的作用加强。正因为这个双重关系,而使饱和气压随温度的升高而变大。

饱和蒸气压的大小还与液面的形状密切有关。在凹液面情况下,分子逸出液面所需作的功比平液面时大,因要克服图 2—13 中画斜线部分液体分子的引力而做功。因此,单位时间内逸出凹液面的分子数比平液面时少, 从而使饱和蒸气压比平液面时小。同理,分子逸出凸液面所需作的功,要比平液面时小,因不必克服如图 2—14 中画斜线部分液体分子的引力而作

图 2—13

功,从而使凸液面上方饱和蒸气压比平液面时大,由于引力的有效作用距离很短(数量级为 10-9m),所以弯曲液面与平液面上方饱和蒸气压之间的差别,只有当气液分界面的曲率半径很小时,如形成小液滴或小汽泡, 才会显示出来。

综上情况其结论是:饱和气压的大小,与物质的性质有关,与液面的形状有关,并随着温度的升高而增大,但它跟饱和蒸气的体积无关。