八、放射化学分析法的兴起
早在 1913 年,德国的 G·赫维西和 E·A·潘内特(Paneth)就将镭 D(210Pb)作为分析手段用于测定铅盐的溶解度。那时可得到的放射性元素的数目极其有限,因而严重妨碍了这门技术的进一步应用。目前已有许多同位素可供应用。因此在分析化学中利用同位素作为示踪物已经很广泛了。这方面的应用分为三类:同位素稀释分析,活化分析和同位素衍生物分析,人们在应用中既使用了稳定同位素,又使用了放射性同位素,后者因无需用质谱仪就可进行测定,故人们更乐于使用。
经典分析方法传统上是用来分离高纯度、高产率的被探索物质的,然后通过称重、滴定和测定一个适当的物理性质就可完成整个测定工作。但同时要求高产率和高纯度自古以来就是定量分析的绊脚石。假如不强调产率,要获得一种高纯度的物质一般并不太困难。然而反过来,产率高但纯度很差的物质却通常易于得到,同位素示踪技术使得有可能重点对准某一目标而无需过多地注意其它目标。这一事实的优点是示踪同位素的化学性质与样品中的同种元素相同,但因其有放射性,故易于检测。
赫维西(Hevesy,György,1885—1966),匈牙利—丹麦—瑞典化学家。生于布达佩斯,在匈牙利和德国求学,获弗赖堡大学博士学位,然后旅居英国与卢瑟福一起工作。赫维西的两项重大贡献都在 1923 年做成的,其中戏剧性不太大的工作至为重要。
1923 年赫维西与 D·科斯特(DirkCoster)合作发现了新元素铪,同年他第一次用含有放射性 212Pb 的溶液来浇灌植物,这样他就能够很详细地观察铅在植物中的吸收和分布情况。这种技术的缺点是铅对大多数生物体系的高度毒性,以至于在开始使用放射示踪原子时,并未引起人们的重视。但是当约里奥夫妇于 1934 年发现人工放射性之后,赫维西的放射性示踪法才发展成为研究生命体系最广泛使用和最有力的技术之一。由于他在发展放射性示踪原子方面的成就,赫维西被授予 1943 年诺贝尔化学奖。