节能和新能源的开发

国民经济的发展要求能源有相应的增长,人口的增长和生活条件的改善也需要消耗更多的能量。现代社会是一个耗能的社会,没有相当数量的能源是谈不上现代化的。现代主要能源是煤、石油和天然气,它们都是短期内不可能再生的化石燃料,储量都极其有限,因此必须节能。节能不是简单地指少用能量,而是指要充分有效地利用能源,尽量降低各种产品的能耗,这也是国民经济建设中一项长期的战略任务。节能问题现已受到各国的普遍重视,作为能源经济发展的重要政策。自 1973 年和 1979 年石油输出国组织

(OPEC)两次大幅度提高石油价格以来,工业发达国家不可能再依靠廉价石油来发展经济,美国、日本率先积极开展各种节能技术研究以缓解“能源危机”的冲击,使单位产品的能耗有明显降低。例如国际先进水平是每炼 1 吨钢需消耗 0.7~0.9 吨标准煤,而我国目前每吨钢的能耗约为 1.3 吨标准煤, 也就是说我国炼钢的能耗是国际水平的 1.6 倍,所以在我国节能应该有很大的潜力可挖。

一个国家或一个地区能源利用率的高低一般是按生产总值和能源总消耗量的比值进行统计比较的,它与产业结构、产品结构和技术状况有关。如在80 年代末,上海市每万元国民经济生产总值要消耗 5.08 吨标准煤,浙江省

是 5.38 吨,而有的省却高达 26 吨,可见它们之间能源利用率差别很大。和

国际相比,我国的能耗比日本高 4 倍,比美国高 2 倍,比印度高 1 倍,所以若能赶上印度的能源利用率,要实现生产翻一番,似乎不必增加能源消费量。要实现国民经济现代化,既要开发能源,又必须降低能耗,开源节流必须同时并举,并且要把节流放到更重要的位置。

能耗高的原因是复杂的,从化学变化释放能量的角度看,无非一是燃烧是否完全,二是释放的能量是否充分利用。我国的工业锅炉和工业窑炉耗费全国总能源的 65%,它们是节能潜力最大的行业。设计节能的炉型、选择节能的燃气比(燃料和空气的比例)、控制锅炉进水温度、及时清理锅炉积垢、积灰等等都可以节能。供电系统和电能利用系统也是能源消耗量大而能量利用率低的领域,节能潜力较大。火力发电是将化学能转化为电能,通过电动机又将电能转化为机械能可以供机床、水泵、通风、电动车、照明等用,这些能量转化过程中的利用率也大有潜力可挖。例如将发电站的余热与城市供热供暖相结合,组成电热联产,将分散的供热(热损耗很大)改为集中供热, 都可有效地提高能源利用率;电动机的材料质量、电机结构的改进可以大大降低损耗;白炽灯的照明效率是荧光灯的一半,研制高效节能灯,并推广使用,也是节能措施之一。总之围绕着节能工作有许多科学技术问题急待研究, 但要使节能工作真正落到实处,不是单纯的技术问题,还要涉及行政管理、能源政策、节能法规、能源价格等各方面的因素。

我国长期面临能源供不应求的局面,人均能源水平低,同时能源利用率低,单位产品能耗高。所以必须用节能来缓解供需矛盾,促进经济发展,同时也有利于环境保护。因此节能是我国的一项基本国策。在节能的同时我们也要积极开展各种新型能源的研究和探索,目前不成熟的新能源也可能成为未来的主要能源。当代新能源是指太阳能、生物质能、风能、地热能、和海洋能等。它们的共同特点是资源丰富、可以再生、没有污染或很少污染,它

们是远有前景,近有实效的能源。以下对这几种新能源作简要介绍①。

太阳能 地球上最根本的能源是太阳能。煤、石油中的化学能是由太阳能转化而成的(见 3.3 和 3.4),风能、生物能、海洋能等其实也都来自太阳能。太阳每年辐射到地球表面的能量为 50×1018kJ,相当于目前全世界能量消费的 1.3 万倍,真可谓取之不尽用之不竭,因此利用太阳能的前景非常诱人。阳光普照大地,单位面积上所受到辐射热并不大,如何把分散的热量聚集在一起成为有用的能量是问题的关键。太阳能的利用方式是光热转化或光电转化。

太阳能的热利用是通过集热器进行光热转化的,集热器也就是太阳能热水器。它的板芯由涂了吸热材料的铜片制成的,封装在玻璃钢外壳中。铜片只是导热体,进行光热转化的是吸热涂层,这是特殊的有机高分子化合物。封装材料也很有讲究,既要有高透光率,又要有良好的绝热性。随涂层、材料、封装技术和热水器的结构设计等不同,终端使用温度较低的在 100℃以下,可供生活热水、取暖等;中等温度在 100~300℃之间,可供烹调、工业用热等;高温的可达 300℃以上,可以供发电站使用。70 年代石油危机之后, 这类热水器曾有蓬勃发展,特别是在美国、以色列、日本、澳大利亚等国家安装家用太阳能热水器的住宅很多(10%~35%)。80 年代在美国已建成若干示范性的太阳能热发电站,用特殊的抛物面反光镜聚集热量获得高温蒸汽送到发电机进行发电。

太阳能也可通过光电池直接变成电能,这就是太阳能电池、光伏打电池。它们具有安全可靠、无噪声、无污染、不需燃料、无需架设输电网、规模可大可小等优点,但需要占用较大的面积,因此比较适合阳光充足的边远地区的农牧民或边防部队使用。已有使用价值的光电池种类不少,多晶硅(Si)、单晶硅(掺入少量硼、砷)、碲化镉(CdTe)、硒化铜铟(CuInSe)等都是制造光电池的半导体材料,它们能吸收光子使电子按一定方向流动而形成电流。光电池应用范围很广,大的可用于微波中继站、卫星地面站、农村电话系统,小的可用于太阳能手表、太阳能计算器、太阳能充电器等,这些产品已有广大市场。

对于利用阳光发电,在美国有 Solar2000 计划,目标是到 2000 年美国太阳能电池总产量达 1400 兆瓦。日本在 70 年代就制定了“阳光计划”。近年来,德国的 ELDURADO 计划等也都是致力于太阳能的开发利用。我国自 80 年代起也开始了太阳能电池的研究,引进了国际先进的技术。太阳能电池现已有小批量生产,受到西藏无电地区牧民们的欢迎。这种小的太阳能发电装置可以为一台彩色电视机和一部卫星接收机提供电源,或为家庭照明和家用电器供电。

生物能 生物能蕴藏在动物、植物、微生物体内,它是由太阳能转化而来的,可以说是现代的、可以再生的“化石燃料”,它可以是固态、液态或气态。稻草、劈柴、桔杆等农牧业废弃物是古老的传统燃料,在广大农村仍是主要能源。但这样的燃料直接燃烧时,热量利用率很低,仅 15%左右,现用节柴灶热量利用率最多也只能达到 25%左右,并且对环境有较大的污染。

① 涉及电池电极反应时,用正极负极表示电极电势的高低,电极电势高的为正极,电势低的为负极。电流由正极流向负极,电子由负极流向正极。而涉及电解问题时,则用阴极和阳极表示电极上所发生的变化, 阳极发生氧化反应,阴极发生还原反应。

目前把生物能作为新能源来考虑,并不是再去烧固态的柴草,而是要将它们转化为可燃性的液态或气态化合物,即把生物能转化为化学能,然后再利用燃烧放热。农牧业废料、高产作物(如甘蔗、高粱、甘薯等)、速生树木(如赤杨、刺槐、桉树等),经过发酵或高温热分解等方法可以制造甲醇、乙醇等干净的液体燃料。在巴西有 800 万辆小汽车用乙醇做燃料;在美国有许多汽车使用含乙醇的汽油作为燃料;欧共体已建成几座由木屑制甲醇的工厂。这类生物质若在密闭容器内经高温干馏也可以生成一氧化碳(CO)、氢气

(H2)、甲烷(CH4)等可燃性气体,这些气体可用来发电。生物质还可以在厌氧条件下生成沼气,这种气化的效率虽然不高,但其综合效益很好。沼气的主要成分是 CH4,作为燃料不仅热值高并且干净,沼渣、沼液是优质速效肥料,同时又处理了各种有机垃圾,清洁了环境。我国农村约有 500 万个小型沼气池作为家用能源。投资建设中型、大型沼气池不仅可用于发电,也可处理城市垃圾。此外科学家们还成功地培育出若干植物新品种,如巴西的香胶树(亦称石油树),每株年产 50kg 左右与石油成分相似的胶质。美国人工种植的黄鼠草,每公顷可年产 6000kg 石油,美国西海岸的巨型海藻,可用以生产类似柴油的燃料油。把生物质转化为可燃性的液体或气体是使古老能源焕发青春的途径。

风能 这是利用风力进行发电、提水、扬帆助航等的技术,这也是一种

可以再生的干净能源。按人均风电装机容量算,丹麦遥遥领先,其次是美国和荷兰。我国东南沿海及西北高原地区(如内蒙、新疆)也有丰富的风力资源,现已建成小型风力发电厂 9 个,发电装机容量 2 万千瓦。风力发电也将是电力建设的一个方面。

地热能 地壳深处的温度比地面上高得多,利用地下热量也可进行发电。在西藏的发电量中,一半是水力发电,约 40%是地热电,火力发电只占10%左右。西藏羊八井地热电站的水温在 150℃左右,台湾清水地热电站水温达 226℃。温度较低的地热泉(温泉)遍布全国,已打成地热井 2000 多处。地热能与地球共存亡,地热潜力不容忽视。

海洋能 在地球与太阳、月亮等互相作用下海水不停地运动,站在海滩上,可以看到滚滚海浪,在其中蕴藏着潮汐能、波浪能、海流能、温差能等, 这些能量总称海洋能。从 60 年代起法国、前苏联、加拿大、芬兰等国先后建成潮汐能发电站,波浪能发电和温差能发电的示范装置也都已问世。我国在东南沿海先后建成 7 个小型潮汐能电站,其中浙江温岭的江厦潮汐能电站具

有代表性,它建成于 1980 年,至今运行状况良好,并且还在海湾两侧,围垦农田,种植柑橘,养殖水产,取得很好的综合效益。

新能源的开发受到世界各国的重视,但进展缓慢,这是因为技术难度较大,对所需研究基金的投资要求较高,有些示范装置,效能虽好,但因成本过高而不易推广。新能源的开发都是综合性项目,涉及化学、物理、电子、机械、仪表控制等各行各业,其中所需各种新材料,需要化学工作者进行研制;许多化学过程和反应条件,需化学工作者进行深入细致的研究。总之化学家将积极参与新能源的开发工作。随着新能源的不断开发,世界能源结构正向多样化的方向发展。