人类从发明酿酒、造醋、制酱、发面时起,就对生物催化作用有了初步的认识,不过当时并不知道有酶这类生物催化剂。进入 19 世纪后期,人们已

积累了不少关于酶的知识,认识到酶来自生物细胞。进入 20 世纪,不仅发现了很多酶,而且酶的提取、分离、提纯等技术有了很大的发展,并注意到有不少酶在作用中需要低分子量的物质(辅酶)参与,对酶的本质进行了深入的研究。1926 年第一次成功地从刀豆中提取了脲酶的结晶,并证明每种结晶具有蛋白质的化学本质,它能催化尿素分解为 NH3 和 CO2。尔后,相继分离出许多酶(如胃蛋白酶、胰蛋白酶等)的晶体。科学实验证明了酶的化学组成同蛋白质一样,也是由氨基酸组成的,它们都具有蛋白质的化学本性。至今, 人们已鉴定出 2000 种以上的酶,其中有 200 多种已得到了结晶。酶是一类由生物细胞产生的、以蛋白质为主要成分的、具有催化活性的生物催化剂。

酶催化作用,有其很多特点,最主要的是:

  1. 酶是由生物细胞产生的,其主要成分是蛋白质,因而对周围环境的变化比较敏感,若遇到高温、强酸、强碱、重金属离子、配位体或紫外线照射等因素的影响时,易失去它的催化活性。

  2. 酶催化反应都是在比较温和的条件下进行的。例如在人体中的各种酶促反应,一般是在体温(37℃)和血液 pH 约为 7 的情况下进行的。

  3. 酶 - 图1酶具有高度的专一性,即某一种酶仅对某一类物质甚至只对某一种物质的给定反应起催化作用,生成一定的产物。如脲酶只能催化尿素水解生成 NH3 和 CO2,而对尿素的衍生物和其他物质都不具有催化水解的作用,也不能使尿素发生其他反应。酶的这种专一性通常可用酶分子的几何构型给予解释。如麦芽糖酶是一种只能催化麦芽糖水解为两分子葡萄糖的催化剂,这是由于麦芽糖酶的活性部位(即反应发生的位置)能准确地结合一个麦芽糖分子,当两者相遇时,使两个单糖单位相连接的链合变弱,其结果是水分子的进入并发生水解反应。麦芽糖酶不能使蔗糖水解,使蔗糖水解的是蔗糖酶。早年提出“一把钥匙开一把锁”的酶催化锁钥模型如图 9-7 所示。

这是一个过于简单化的比喻,但它说明了一个重要的问题,通过减少开始这项工作所需要的能量,酶使得这项困难的工作变容易了。就像钥匙只能适合于特殊钥匙孔的形状一样,酶在活性部位具有只允许对某些分子起作用的特殊的结构

近年来的研究结果表明,把酶和底物看成刚性分子是不完善的,实际上它们的柔性使二者可以相互识别相互适应而结合。

  1. 酶促反应所需要的活化能低,而且催化效率非常高。例如,H2O2 分解为 H2O 和 O2 所需的活化能是 75.3kJ·mol-1;用胶态铂作催化剂活化能降为 49kJ·mol-1;当用过氧化氢酶催化时的活化能仅需 8kJ·mol-1 左右, 并且 H2O2 分解的效率可提高 109 倍!

从酶的化学组成来看,可分成单纯酶和结合酶两大类。单纯酶的分子组成全为蛋白质,不含非蛋白质的小分子物质。如脲酶、蛋白酶、淀粉酶、脂

肪酶、核糖核酸酶等都属单纯酶。结合酶的分子组成除蛋白质外,还含有对热稳定的非蛋白质的小分子物质,这种非蛋白质部分叫做辅助因子。酶蛋白与辅助因子结合后所形成的复合物或配合物叫做全酶。辅助因子是这类酶起催化作用的必要条件,缺少了它们,酶的催化作用即行消失,酶蛋白、辅助因子各自单独存在时都无催化作用。酶的辅助因子可以是金属离子[如 Cu

(Ⅱ),Zn(Ⅱ),Fe(Ⅲ),Mg(Ⅱ),Mn(Ⅱ)等]的配合物(如血红素、叶绿素等),也可以是复杂有机化合物。

人体对食物的消化、吸收,通过食物获取能量,以及生物体内复杂的代谢过程都包含许多化学反应,必须有各种不同的酶参与作用。这些专一性的酶组成一系列酶的催化体系,维持生物体内各种代谢过程有规律的进行。

新陈代谢简称代谢。广义的代谢是泛指生物活体与外界不断交换物质的过程,包括从体外吸取养料和物质在体内的变化。狭义的代谢是指物质在细胞中的合成和分解过程,一般称中间代谢。合成代谢一般是将简单物质变成复杂物质,而分解代谢则是将复杂物质变为简单物质。代谢过程是生命现象的基本特征。糖、脂肪和蛋白质的合成途径各有不同,但它们的分解途径的共同点是,氧化成 CO2 和 H2O。

生物体是通过物质的氧化获得能量的,但物质氧化时所产生的能量一般不能直接被利用。机体利用能量的方式是将生物氧化系统释放的能量,以高能键的形式先贮存在生物体内的 ATP 中(ATP 是核苷酸-三磷酸腺苷英文名称的缩写,其分子是由一分子腺嘌呤,一分子核糖和三分子磷酸连接而成), 当需要时再释放出来供各种生理活动和生化反应需用。

生物氧化过程,即是由各种有机物(食物来源)在酶的作用下,氧化生成 CO2 和 H2O,并释放出能量的过程。

有机物 + O →CO + H O + 能量

由于酶的催化作用,生物氧化得以在比较温和的条件下及有水的环境中进行,并且能量可以逐步释放。

通过食物氧化得到的能量主要用于合成 ATP。然后在适当的催化剂存在时,ATP 将经历三步水解,其提供的能量可用来引起其他化学反应。各种生物活动,如核酸、蛋白质的生物的合成、糖、脂肪、药物等物质的代谢,以及细胞内外物质的转运等等,都有 ATP 参与。ATP 被称为生物体内的能量使者。

对于大多数细胞代谢过程的酶已经有了较多的了解。目前酶学研究中的新领域包括:酶合成的遗传控制与遗传病、许多酶系统的自我调节性质、生长发育及分化中酶的作用与肿瘤及衰老的关系、细胞相互识别过程中酶的作用等等。