二 化学实验手段的现代化

化学实验手段是制约化学科学研究的非常重要的方面。虽然在 19 世纪化学实验手段已经有了相当的水平,形成了一套相对比较完整的化学常规仪器(包括各种玻璃仪器在内)和设备,但这些仪器和设备的质量还不高,种类还不够齐全,精度也不够灵敏和准确。为克服这些不足,人们在对原有的化学实验手段加以改进的同时,积极吸收现代各种科学技术的新成果,创造和发明了一大批现代化的实验仪器和设备。

在 18—19 世纪,天平曾是使化学实验定量化的重要实验手段,借助于天平,人们取得了一系列重要实验成果。但当时的天平还比较粗糙,灵敏度一般只能达到 0.1 克—0.01 克左右。为了满足现代化学科学研究的需要,人们对天平进行了改进和完善,制造了一些灵敏度更高、操作更方便的天平。如现代的分析天平,从称量范围来看,有常量分析天平(范围:0.1 毫克—100 克)、微量分析天平(范围:0.001 毫克—20 克)和介于二者之间的半微量分析天平;从种类来看,有等臂式天平和悬臂式超微量天平(灵敏度可达 0.01 微

克,最大载重为 1 毫克)。这些天平具有灵敏、准确和操作方便(如应用光学、电学原理制造的电光天平)等特点。

现代化学的许多重大突破都与化学实验手段的改进、发明和创造紧密相关。1919 年 J.J.汤姆生的助手阿斯顿(F.W.Aston,1877—1945)改进了磁分离器,制成了第一台质谱仪,从而把人类研究微观粒子的手段向前大大推进了一步。阿斯顿利用质谱仪发现了氖、氩、氪、氙、氯等元素都有同位素存在;在 71 种元素中,他发现了天然存在的 287 种核素中的 212 种。为表彰阿

斯顿在研制质谱仪和发现众多核素方面的卓越贡献,他于 1922 年获得了诺贝尔化学奖。

现代化学实验使用了很多灵敏、精确和快速的实验手段,表现出仪器化的特点,红外光谱、核磁共振、顺磁共振和质谱等实验手段已被广泛使用。在微量分析和痕量杂质分析方面,出现了原子吸收光谱、极谱分析、库仑分析以及萃取、离子交换分离、色谱、电泳层析等新的分析、分离技术和手段; 在化学元素或组分的分析测定、微观分子结构、晶体结构、表面化学结构等的分析测定方面,出现了 X 射线、荧光光谱、光电子能谱、扫描电镜、电子探针、拉曼激光光谱、分子束、四圆衍射仪、低能电子衍射、中子衍射、皮秒激光光谱等现代化的实验技术和手段。运用这些实验手段,能够更精确地进行化学定量检测,达到微(10-6)米、纳(10-9)米、甚至皮(10-12)米数量级, 从而大大促进了化学实验手段的精密化。

近 30 年来,计算机在化学实验中得到了卓有成效的应用,正逐步成为重要的化学实验手段。目前出现的各种仪器的联机使用和自动化,不仅用于电分析化学、谱学、微观反应动力学、平衡常数的测定、分析仪器的控制、数据的存贮与处理、以及化学文献检索等,而且还能使经典化学操作达到控制的自动化。