引力理论的进展

引力是自然界最弱的相互作用,过去在相当长一段时间内,引力研究的进展不仅缓慢,而且除了天体物理以外,与其它学科的联系也甚少。然而,近二三十年来,情况却有所改观,一方面是引力物理随着宇宙学与高能天体物理的进展而发展,另一方面,在凝聚态物理、材料科学中,微引力物理的发展令人瞩目地崛起,与此同时,引力理论自身也在迅速地发展着。最初,引力理论沿着两个不同的方向发展,一是把电磁场理论纳入引力理论之中的研究,一是引力理论向宇宙学方向发展。(1)引力与电磁场的统一性研究

电磁场是一种规范场,麦克斯韦方程是一种最简单的规范场方程。包括电磁场、引力场在内的规范场都可以被视为一种几何结构,它们都具有拓扑性质,也具有可以以几何方式表述的辐射特征。在建立相对论后不久, 爱因斯坦即注意到了这些相似性。他认为“存在两个独立的空间结构,引力的、电磁的,这两种场应该存在于一个统一的空间结构之中。”1930 年以后,爱因斯坦把他的大部分精力投入到引力与电磁力的统一研究之中。与爱因斯坦一起,还有几位数学家,如列维-契维塔(Levicivi-ta)、嘉当(Cartan)、魏尔(Weyl)等人,都热衷于这一工作。魏尔曾试图像爱因斯坦那样,从几何学上用弯曲时空解释这两种力。他确信,通过对时间、空间连续体的研究,可以把引力与电磁力联系起来。首先必须把电磁场方程用于黎曼空间,以便与爱因斯坦的引力理论接轨。为此,魏尔大胆地尝试着应用规范不变性的设想①,令时空两个无限临近点 x? 与 x? +dx? 间,

场量■分别取f与f + ∂f / ∂xμdxμ值。

考虑到在规范变换中,各时空点的变换率不同,

■在两个时空点间应从f到f + (∂μ + Sμ )fdxμ 变换。由于规范场Sμ与电磁场量Aμ都具有四个分量, 而且为保持变换不变性要求,

Sμ与Aμ都分别以∂μSν - ∂νSμ及∂μAν - ∂νAμ

相同的方式出现,按此方式可以把电磁学统一起来。虽然在初期,这一工作取得了一些进展,但是毕竟引力场与电磁场分属于两个完全不同的范畴,进一步的研究遇到了难以克服的困难。泡利和爱因斯坦都认为魏尔的理论虽然在数学上很有趣,但与电磁学理论的联系越来越远,以致后期的进展不大,最后魏尔放弃了原来的想法。

在量子力学诞生后,于 1927 年,福克(Fock)和伦敦(London)注意到电磁动量应用

e ie

Rμ - ( c)Aμ改变为∂μ - ( hc )Aμ表示, 规范场量Sμ应看作为 - (ie / hc)Aμ。

i 的引入表明,应当把规范变换换作为位相的变换。由于电磁场的位相在复平面单位圆上是 U(1)位相,而单位圆上的两个复数相乘仍在单位圆上,它们形成变换群,即李群。由这种复杂的位相所组成的变换不变性, 称为非阿贝尔规范理论,

于是电磁理论可以表示为Sκλμν

F = 0(1),∂ νF = j

(2),

λ μν μν μ

(1)表示法拉第定律和高斯定理,(2)表示安培定律和库仑定律,

而非阿贝尔运动方程则为SκλμνDijF j = 0

(3)和DviF j = ji

j uv u

(4),其中D ij = δ ij∂ - igC ijBk,Fi = ∂ Bi - δνBi - igC ijk Bj Bk

λ λ k λ uv μ ν μ μ v

从对比中不仅看到了它们之间的相类似之处,而且根据位相概念,很自然地引入了 Cijk 与 Bk? ,并用普遍的协变微分替换了普通的微分。

本来,在 U(1)情况下,一个变换只对应圆周位置上的一个参数,但在复杂的李群情况下,SU(2)需要 3 个参数,SU(3)需要 8 个参数,使变换异常复杂起来。虽然电磁力与引力的统一至今没有结果,有一点却是肯定的,它导致了对电磁场是一种位相场的正确认识。一个复杂的位相场就是李群,而复杂的位相所组成的变换不变性即为非阿贝尔规范理论。电磁力与引力的统一应该与非阿贝尔理论紧密相关。

非阿贝尔规范理论是在 1954 年由杨振宁和密耳斯(Mills,R.L.)提出来的。1961 年,格拉肖(Glashow,SheldonLee1932~)首先把这一理论用于电磁作用与弱作用的统一。1967 年温伯格(Weinberg,Steven1933~)与萨拉姆(Salam,Abdus1926~)又在对称性自发破缺的基础上,提出了电磁与弱相互作用的具体模型,并预言了弱中性流的存在。1970 年胡福特(Hooft) 等人又将这一模型做了重正化发展。1973 年,美国费密实验室与欧洲核子中心相继发现与模型一致的弱中性流。人们确信,非阿贝尔规范场理论不仅是把电、弱,甚至还将是把引力以及强相互作用都统一在内的有力工具。

(2)引力的“磁性”研究

与引力和电磁力相关性研究相紧密联系的还有关于引力的“磁性”研究。广义相对论的三个经典检验都只涉及引力的“电”分量,即广义相对论中的引力势部分。在牛顿引力理论中,引力只具有“电”分量,它是相对论引力理论在弱引力情况下的近似。然而在广义相对论的理论框架之下,引力应该有其“磁”分量,这一分量与牛顿引力没有近似的对应关系。爱因斯坦在他的转动圆盘中,早就做出过预言,静止的质量只引起引力的

“电”分量,而运动的质量将引起引力的“磁”分量,旋转的质量会有引力的“磁矩”,两个运动着的旋转体之间会有引力“磁矩”的相互作用, 这些均是牛顿引力理论中所没有的。检验引力的“磁”分量是否存在,自然成为鉴别牛顿引力理论与广义相对论二者的关键之一。

检验的原理很简单,用一个在空中旋转的陀螺,根据广义相对论,在旋转的陀螺和旋转的地球之间应该有引力的磁力作用,陀螺会发生进动, 进动的方向和进动的速率与地球的旋转有关。这种相互作用与原子物理学中自旋-自旋相互作用十分相似。自旋-自旋相互作用十分微弱,只引起光谱中的谱线的超精细结构。陀螺与地球之间的引力“磁”作用也十分微弱, 对一个放置在 600 千米高空的陀螺,地球引力磁作用,所引起的最大进动率也只有 0.044″/年。

相对论陀螺实验开始于本世纪 80 年代,美国斯坦福大学物理系一个实验小组计划在本世纪完成这项实验①。他们的回转仪是一个不球度和不均匀度均极小(相对几何不球度和相对密度不均匀度均小于 3×10-7)的熔融石英晶体球,球外由铌超导体覆蔽,并由安放在真空度小于 10-8 托的高真空石英球腔内的静电装置旋空支撑,整个装置安放在卫星舱内的液氦中, 使腔壁冷却温度在 9K 以下。利用液态氦气流吹动小球,使其转动角速度达到每秒几百转。为了精确地测量到回转仪的进动,必须在无接触条件下, 精确地确定回转仪转轴相对卫星的指向。他们选择了七妙的方法,这就是利用磁场进行。当然首先需要对卫星有良好的磁屏蔽,以消除地磁及其它杂散磁场的干扰,它们的强度不得高于 10-7 高斯数量级。旋转超导球由于伦敦效应被磁化后,磁矩的轴与旋转的轴相垂直,轴的方向可以利用根据约瑟夫森效应工作的高灵敏度超导磁强计测出。这一实验对卫星的要求也很严格。首先它应相对宇宙空间某颗不动的恒星保持定向,定向角度的偏离不得大于 0.001’’ 。为此,装在舱内的定向望远镜镜片应由石英制造,并冷却到液氦温度,在液氦温度下,它们的主光轴由于湿度变化的漂移角度不得超过 0.001’’ 。这一实验的构想新颖,设计巧妙,不仅难度很大,而且应持续数年、十数年甚至数十年才能有明显的结果。在这以前,对广义相对论的检验只涉及引力势的相对修正量测量,即只涉及引力的“电”分量, 而这一实验,是从引力的旋度分量,即只涉及引力的“电”分量,而这一实验,是从引力的旋度分量,即从“磁”分量入手进行引力理论的检验, 因此它具有十分特殊的地位,世人正以极大的兴趣密切地注视着它的进展。

  1. 奇性与宇宙监督原理

引力场方程在静态球对称真空条件下的史瓦西解是一个精确解,它描述了渐近平直空间中,质量为 M 的孤立球对称物体的引力场。在通常使用的坐标系中,度规分量在史瓦西半径 r=2M 处变为奇点。在 1959 年,经弗伦斯卡尔(Fronskel)、芬克尔斯坦(Finkelstein)及克鲁斯克尔(Kruskal)所证实,这一奇点仅是一个“虚假的”数学奇点,时空结构在这一点所产生的“质变”可以通过坐标系的重新选取而消除。虽然如此,相对性引力理论的奇点问题并未消除。

由于引力可以在整个宇宙中产生一种宇观的效应,任何引力理论的发展都会导致对宇宙整体结构的一种解释,随之出现与之相应的一种宇宙模型。牛顿引力理论也如此,然而它所面临的问题是,由这一理论,导致宇

宙中的一切物体必须回落到一起,这与当时人们所认为的宇宙基本上不随时间变化的观念相矛盾。广义相对论建成后,爱因斯坦只是靠把宇宙学项硬加到场方程中,才克服了这个“吸引”问题。此外,爱因斯坦的静态宇宙模型仍然是不稳定的,只要有一点微小的扰动,就会使它无休止地塌缩或膨胀起来。1920 年,美国天文学家斯里弗(Slipher,VectoMelvin1875~ 1969)与哈勃(Hubble,EdwinPowell1889~1953)观测到遥远星系的退行以后,爱因斯坦的静态宇宙模型即被人们放弃了,描述膨胀的第一个宇宙模型由美国物理学家弗里德曼(FriedmanHerbert1916~)给出。1922 年,弗里德曼的宇宙模型又被罗伯孙(Robertson)与沃克(Walker)所推广,他们的模型假设宇宙是均匀和各向同性的。 1951 年,陶伯(Taub)建立了第一个各向异性的宇宙模型,其后又被赫克曼(Heckmann)和舒金(Schuking)所发展。1965 年,彭齐阿斯和威尔孙发现了具有高度各向同性的微波背景辐射表明,宇宙的大尺度结构相当近似于弗里德曼模型。很快地,观测得到的宇宙氦和氘的丰度又与弗里德曼模型中的合成计算符合得很好。这些都证明,弗里德曼模型是一个较好的近似宇宙模型。然而,弗里德曼宇宙模型却要求有一个初始奇点,即初始大爆炸产生。

从弗里德曼模型问世时起,回避该模型的奇点研究就一直在进行着。1948 年,邦迪(Bondi)、戈尔德(Gold)与霍伊尔(Hoyle)就曾提出宇宙处于稳恒状态,即全部时空点处于相同的面貌,当星系彼此退行时,各时空点的物质也在随时相应地产生,宇宙总保持着密度、状态上的稳恒。这一解释虽然避开了奇点,却与后来的射电源及宇宙微波背景辐射的观测相矛盾。回避奇点的研究还在其它几种途径上进行着,例如,1963 年,利弗席兹(Lifshitz)和卡拉特尼科夫(Khalatnikov)把具有奇点的引力场方程解在奇点附近做幂级数展开,他发现,在具有奇点的解中所包含的任意函数比普通解中要少,因而做出推测,具有奇点的解在全部解空间中的测度可能为零。然而后来发现,情况并非如此,在有的普通解中,任意函数仍足够多,奇点仍不可避免。 几十年来的理论研究表明,所有回避奇点的尝试都不太成功。1965 年彭罗塞(Penrose)通过整体微分几何证明,如果某些整体性条件得以满足,恒星塌缩过程中的奇点是不可避免的①。彭罗塞的方法又被霍金和杰罗奇(Ceroch)所推广。从 1965~1970 年间,他们提出了若干理论,并把它们用于宇宙学研究。他们于 1970 年提出奇点定理

②。该定理表明,若满足下列整体条件:①广义相对论正确,②对任何类时向量 Va,物质的能动张量满足

1 a b

(Tab - 2 gab T)V V

≥0,

③不存在闭合类时曲线,④任何类时或零测地线上都包含某一点,在该点处有 V[aRb]cd[eVf]VcVd≠0,⑤在某点 p,使从p 发出的指向过去或未来的零测地线再次收敛时,奇点是不可避免的。实际上,在现有的相对论引力理论框架下,上述这五项条件都是合理的。条件①已被若干实验所证实, 条件②适用于任何正质量密度和正压力的物质,条件③表明不可能回到自己的过去,这是对因果律的要求,条件④表明,每一条类时或零测地线都会与某些物质或曲率取向无规则的点相遇,条件⑤要求宇宙中的物质或能量足够集中,使从某点 p 发出的指向过去的每一条光线会聚,这意味着宇宙中存在有足够多的物质,得以使条件⑤满足。

奇点定理表明,广义相对论的本身就预言了奇点的存在,因为在一般情况下,每一条类时或零测地线都会存在一个起点。这一定理还表明,当一个恒星收缩到小于史瓦西半径内,就会出现奇点。在奇点处,人们不知道所遵循的规律,丧失了预言未来的能力,而且每一次的恒星塌缩都会在宇宙中增加一个不可知的因素。为摆脱这一困境,人们提出了如下猜想, 奇点虽不可避免,但是所形成的奇点是出现在所谓的黑洞范围以内,光线与其它任何信息都不可能从那里逃离出来,人们不能观测到奇性,或奇性与人们日常生活的经典范围不可能发生任何联系,因而物理原则也就不可能被破坏,这一猜想即被称为宇宙监督原理(hypothesis of cosmic censorship),无论证明或否定这一原理都是相对论引力理论所面临的重要课题之一。参与这一课题研究的有威勒(Wheeler, J. A.)、依斯瑞尔(Israel, W.)、德洛奇克维奇(Doroschkevich, A.G.)、杰尔多维奇(Zel'dovich Ya.B.)和诺维柯夫(Novikov,S.P.)。

(4)量子引力理论

20 世纪基础物理研究的巨大成就,当归功于相对论、量子论与引力论的建立。相对论、量子论和引力论都具有普适性,它们的普适性的一个重要体现分别表现在 c、h 和 G 这三个普适常数上。然而,三个理论是否真的具有普适性,还在于它们彼此间的相容性,广义相对论的建立证实了引力论与相对论的相容性。

量子理论的发展证明,物质的各种运动形态都遵从量子化的要求,与此同时,一切相对论性场,如电磁场也应是量子化的。在场量子化研究的初期,曾出现了一系列的发散困难。在 40 年代末,量子化电磁场的发散困

难初步通过重正化理论得以解决。发散困难的最根本解决是在 60 年代完成。弱电统一理论的建立,不仅解决了弱相互作用中的发散困难,而且在类似弱相互作用的框架之中,还可望在强相互作用领域解决相对论与量子论的相容性。最困难的一步就是引力论与量子论的相容,这一步骤的一个主要目标就是建立量子化的引力理论。量子引力理论的研究还起源于广义相对论的奇点问题。由彭罗塞提出,后经霍金和杰罗奇等人最终建立的奇点定理表明,在相当宽的物态条件下,引力场方程的解必定具有奇性。奇性的存在表明,广义相对论属于服从因果律的经典物理范畴,在奇点处, 这一理论不再适用。有可能在考虑到引力场的量子性之后,奇性自然消失, 这一猜测随后在霍金黑洞蒸发理论中得到了支持。

迫使人们研究量子引力理论的第三个动机来源于大统一理论。弱电统一理论已经建成,弱电与强相互作用的大统一理论正是当前的热门课题, 研究过程表明,必须同时考虑到它们与引力作用的统一,而这一统一的实质就是建立量子引力理论。经典物理学的理论框架是建立在因果律的基础上的,经典物理学依赖于物理定律和它相应的边界条件,然而当问题涉及到奇点,而这个奇点又不是数学或模型的缺陷由人为造成的时,奇点很难消除,又很难给出合理的边界条件,这就迫使人们必须重新考虑原有的理论。

沿着膨胀和暴涨的宇宙反向历程,应用经典宇宙学所给出的框架,回溯宇宙在暴涨之前的状态,很自然地会得到宇宙的尺度将趋于零。这意味着,引力场的强度以及物质场的能量密度将趋于无限大,宇宙是从一个奇点演化而来的,而这个奇点并非由于模型的缺陷人为引起的。早在 60 年

代,彭罗塞和霍金就曾利用整体微分几何证明过①,奇点不仅是高度对称的,而且是广义相对论的必然产物。这意味着,在广义相对论的理论框架之中,不可能找到解决奇点的方案,或者说,尽管广义相对论揭示了时空的引力弯曲,但它对于极高曲率的空间并不适用。量子论的鼻祖普朗克很早就主张,应在所有的自然力之间建立联系。1899 年,他首先提出了“普朗克长度”这一普适的这一最小长度 Lp,以后又陆续提出了“普朗克时间”

tp、“普朗克温度”Tp 与“普朗克质量”Mp,它们分别为 Lp=(hG/c31/2=4.05

× 10-33cm, tp=(hG/c5)1/2=1.35 × 10-43s,Mp=(hc/G)1/2=5.45 × 10-5g ,

Tp=(hc5/k2G)1/2=3.56×1032K。由于h、c 和 G 三个常量都是相对论不变量, 以它们为基准的普朗克自然单位将是不变和唯一的,这一点具有深刻意义。审查上述量的大小不难看出,温度 Tp 极高,甚至比宇宙大爆炸时刻的温度还高,长度 Lp、时间 tp 却极小,质量 Mp 也不很大,虽然这些值都是实验室条件下无法得到的,它们却使人们想到,在暴涨之前的宇宙这些是否是可以接近的尺度,因此,应该由一个量子化的广义相对论取代经典广义相对论。

本世纪初,量子力学诞生之后,量子力学原理首先用于解释微小系统

——原子结构方面的困难,确立了薛定谔方程,同时也得到了有关原子特征的一系列量子力学描述。本世纪 60 年代以来,当人们试图用量子力学解释巨大的体系——宇宙结构时,却发现它们之间有着惊人的相似①。首先, 在具有电磁作用的质子与电子微小体系中,重要自由度 r(t)在趋于零时, 产生奇点的经典困难,而在具有引力作用的大物质体系中,重要自由度标度因子 R(t)在趋于零时,也产生奇点的经典困难;微小电磁体系具有玻尔半径 10-8cm 的量子长度,而引力作用体系则具有普朗克长度 10-33cm 的量子长度;微小体系服从薛定谔方程的动力学规律,而引力体系则有惠勒- 德维特方程。关于这两个体系间的相似与联系,近年来的研究又有了新的进展。本世纪 60~70 年代,德维特(DeWitt,B.S.)、米斯纳(Misner,C.W.) 和惠勒等人在量子宇宙学方面做出了重要的基础性工作,他们建立了描述宇宙量子特征的惠勒-德维特方程,然而求解这个方程却面临边界条件的确立。因为最初宇宙究竟处于什么状态仍然不能确定。

1967 年,德维特曾企图不依靠边界条件,仅仅根据数学上的自冾,得到惠勒-德维特方程的解,即宇宙的波函数①,但是这个愿望最终没能实现。从 70 年代末到 80 年代,哈特尔(Har-tle,J.B.)和霍金又提出了一个

称为“无边界”的方案②。他们利用 40 年代由费因曼(R.Feynman)发展起来的路径积分法的量子力学形式,大胆地确定了一个称为无边界条件的宇宙波函数。此外,林德(Linde,A.D.)和维伦京等人又分别提出了“隧道效应”方案,由此得出了称为隧道波函数的宇宙波函数。这两个波函数都表明,宇宙在足够大,即几千个普朗克长度时,时空是经典的,理论结果与观测宇宙学的结果相一致;但当宇宙尺度极小时,宇宙不仅有着极为复杂的拓扑结构,这个结构还不断发生变化,这种变化是起伏的,人们把它形容为“长满了茸毛”的普朗克尺度极早期宇宙,宇宙在“量子茸毛”中创生。尽管到目前为止,尚没有一个成熟的量子引力理论,然而 80 年代以来, 在量子引力课题的研究方面,已经取得了一些有价值的成果。首先,已能较好地说明了均匀性问题。大爆炸宇宙学的均匀性问题曾使人们多年来感

到困惑,原因是在宇宙中,各种尺度的星系、星系团、超星系团结构是高密度区,巨洞又是低密度区,宇宙中物质的分布是不均匀的。然而,从微波背景辐射的观测可以看出,各向不同性不超过万分之一,甚至十万分之一,这表明,物质在早期宇宙的分布是均匀的,此外,各种天体氦含量的一致以及不同方向计数结果的一致,也同样表明早期宇宙物质的均匀性。当今宇宙的非均匀性应当从早期的均匀状态演化而来,而非均匀性发展的机制就来自于引力的不稳定性。然而,最初不稳定性的机制来自何处,这正是大爆炸宇宙学的难题之一。原来所提出的热涨落机制已被证明是不存在的,因为这种热涨落所产生的涨落谱,还不能说明当今宇宙所呈现非均匀性的定量特征。

80 年代以来,在用量子引力理论解释非均匀性起源机制方面,已经取得了一些进展。有两个非均匀性起源的机制理论很有生命力①②。其一是宇宙真空量子涨落,它认为,宇宙年龄在 10-36s 以前,真空涨落是唯一可能的起伏源。虽然这一涨落只在普朗克常数数量级,但是由于整个暴胀阶段是一个熵增加的耗散过程,初始的量子涨落将具有 Ze′ldovich 谱,由它可以解释星系成团结构的出现。另一种解释是宇宙弦理论。该理论认为, 当温度足够高时,由于自发对称破缺,真空相变起伏,宇宙将出现面、线、点等缺陷。线状宇宙弦还可能重联后,演变成环或弦,它们再吸引物质, 就形成各种尺度的天体,这一解释正好又说明了天体分布的自相似性。目前,这两个模型在解释有关星系的条状结构、巨凋结构,星系的亮度,星系、星系团的运动速度、角动量以及 3K 背景辐射的各向异性、红外背景辐射、引力波背景等方面都取得了不同程度的成功。