植物生长需要“粮食”
我们人类是吃粮食长大的,那么,植物生长是不是也需要“粮食”呢?答案是肯定的。而且,植物的“粮食”还不用像人类一样费工夫去制造和寻找,因为它就在我们周围无所不在的空气当中。
地球周围围绕着一层厚厚的大气,这就是我们周围的空气。空气里主要有什么呢?科学家分析后发现,空气中78%的成分是氮气,21%的成分是我们呼吸所需要的氧气,还有约0.027%的成分是二氧化碳,其余的就全是一些含量非常微少的气体了。二氧化碳气体的含量在空气中是第三多,它就是绿色植物生存必不可少的“面包”。
含量才0.027%,那么多绿色植物,够“吃”吗?别担心,虽然才0.027%,但由于空气的总量非常巨大,算起来二氧化碳的数量也就很大了。自从植物勇敢地走出海洋登陆以来,已经有多少亿年了,植物一直不断地“吃”着这样的粮食,但大气中的二氧化碳含量并没有大的变化。
植物吸收了二氧化碳后会把其中的氧释放出来,而把其中的碳转化成自己身体的一部分,并固定下来。现在,地球上的陆生植物(主要是森林)每年仍能固定数以亿吨的碳。据计算,仅地球上的森林所含的碳就约有4000~5000亿吨,假如树木平均年龄为30年,每年就有大约150亿吨的碳就是被树木从二氧化碳转化成了木材,供给人类生活建设所用。空气中植物所需要的成分可不止是二氧化碳,含量最多的氮也是植物、动物乃至一切生物所必需的。植物所需的氮一般是通过吸取氮的化合物来获得的,因为植物大多没有直接从空气中获取氮的本领,那么,植物就没有办法利用空气中的氮了吗?当然有办法,因为有的植物可以开设“地下氮肥厂”。
在自然界中,存在着这样一种奇特的现象:在许多高等植物的根中,经常会有细菌和真菌共同生活在一起,它们相互依存,联系密切,在许多情况下可以称之为“相依为命”,这种现象就叫做共生。共生是植物与植物以及植物与微生物之间长期相互适应的结果。当你走在大豆田里,满眼绿油油的一片,随风摇曳,真的很惹人喜欢。拔出一棵大豆,你就会发现在大豆的根上有许多小圆球,用手使劲挤压一下,小圆球还会有许多液体流出来。这些奇怪的小圆球是什么呢?它们就是我们所说的“地下氮肥厂”——根瘤,也是植物界中最常见的一种共生现象。
豆科植物的根也会和人一样得“肿瘤”?别害怕,肿瘤对人类来说在许多情况下都是非常有害的,甚至是致命的,但是豆科植物根上的这种“肿瘤”,对豆科植物来说却是有益无害的。
豆科植物的肿瘤一般总是生长在根上的,所以人们顾名思义称之为根瘤。根瘤并不是植物本身先天所具有的,而是由于土壤中的根瘤细菌侵入植物根部而生成的,不同的豆科植物,它们能生成的根瘤的形状也不一样:大豆的瘤是圆形的;豌豆的瘤是椭圆形的;苜蓿的瘤是手指状,还有分枝。不同植物的根瘤颜色也不尽相同:有褐色、灰褐色和红色。
尽管根瘤的性状不同、颜色各异,但内部的基本构造却是一样的,它们都是植物为根瘤菌“建造”的“安乐窝”。
根瘤细菌有很多种,常见的根瘤细菌大多专门侵染豆科植物的根,而且不同的根瘤细菌会选择不同的豆科植物作为伴侣。根瘤菌自身身体极小,宽只有0.5~0.9微米,身长不过1~3微米。它们的模样也不全相同,有的像根短棍,有的像个圆球。在没有找到寄主之前,根瘤菌在土壤中呈短杆状,有鞭毛,过着腐生和寄生的“懒散”生活。它们自己不劳动,仅仅靠一些腐烂的植物的根、茎、叶供给其自身发育和繁殖的营养。当豆科植物在土壤中开始生长以后,它们的根部会分泌一些物质,根瘤菌一见到这些物质便纷纷聚集过来,在豆科植物根的周围大量繁殖,有的还钻到豆科植物根部表皮的里边去。豆科植物的根细胞受到这些根瘤菌的刺激就会发生分裂,使皮层细胞不断增多、细胞变大,然后就形成了许许多多凸起的瘤状物。
根瘤菌进入豆科植物根部以后会大量繁殖,同时在形体上也会发生很大变化:鞭毛失去了,形状也不规则了,体积也比在土壤中过流浪生活时大了几十倍。随着自身在形体上发生的变化,根瘤菌的机能也发生了变化,它们抛弃了过去靠腐生和寄生生活的“懒散”习惯,变得又勤劳、又能干,还学会了新本领——能固定、摄取空气中的氮!
根瘤菌在植物中定居下来以后,大豆会把由根部吸收来的水、无机盐以及由叶子制造的有机物质免费供应给它们,作为它们制造养料时所需要的物质和能源;而根瘤菌则发挥它本身的特有的优势,依靠体内特殊的固氮酶,把空气中的分子态的氮加工成氨和氨态化合物,为大豆免费提供氮肥。你看,豆科植物有了根瘤菌这个好朋友,不就等于有了一座私家独享的“地下氮肥厂”了吗?
根瘤菌与大豆配合得很默契,它们亲密合作,互相帮助,互通有无,过起了共同的生活,这种相互合作的关系会维持很长一段时间,一直到豆子成熟时才宣告结束。等到来年,新的豆科植物在被种植时,它们还会再重复以前的故事。
根瘤菌为什么能固氮呢?在工业化生产氮肥肘,人们使用铁做催化剂,还必须在高温、高压条件下才能合成氨。当然,根瘤菌是不可能制造出这种条件的,它们另有高招。在根瘤的发生过程中,根瘤菌的细胞内会产生多种与固氮相关的酶。这些固氮酶是一种生物固氮催化剂,在常温常压下就能够催化氨的形成,固定氮素。不过,根瘤菌的固氮酶固定氮素有一个非常重要的前提条件,那就是必须保证严格无氧的条件,这就难怪有益的根瘤菌只生长在地下了。
根瘤细菌在空气中获取的氮素一般会有三种用途:一部分供给根瘤细菌自身生活的需要;一部分供给豆科植物的生活需要;还有一部分会随豆科植物的根系遗留在土壤里,可以提高土壤肥力。
从豆科植物开花到籽粒成熟这段时间,是根瘤菌固氮活性最高的时期,这时的固氮量占根瘤菌一生固氮量的80%。据科学家测定,一亩大豆的一生中,与它共生的根瘤菌能固定空气中的氮6.75千克,折合硫酸铵33.75千克。你看,根瘤菌的固氮本领有多大啊!豆科植物一生中积累的氮素,约有2/3是由根瘤菌固定的。地球上所有生物每年固定的氮素约为1亿吨,而与豆科植物共生的根瘤菌的年固氮量就有5500万吨,占地球上所有生物固氮量的一半以上。这个数字相当于含氮量为21%的化肥硫酸铵26190万吨,如果用设计年产量为100万吨硫酸铵的化肥厂来生产这些氮肥,那么至少需要兴建261个。可以设想,根瘤菌为人类节省了多少资金开支、节约了多少能源。由此看来,人们把豆科植物的根瘤比作“氮肥加工厂”是完全有道理的。
正是因为根瘤菌有这么大的固氮本领,所以人们对豆科植物根上的肿瘤从来就没有医治过,而且不但不医治,还采用接种等办法,在土壤中大量繁殖根瘤细菌,促使豆科植物与根瘤菌密切合作,形成大量根瘤,以利豆科植物的生长,获取豆科作物的高产。
在农业生产中,人们为了满足农作物对氮素的需要,通常采取的措施就是施加氮肥。但氮肥的生产会耗费资源、增加污染,化肥施用多了还会使土壤板结、酸化,破坏宝贵的土地资源。空气中有78%是氮气,如果所有的植物都能够利用空气中的氮气,那该有多好啊!随着基因工程学的迅速发展,科学家已经能够把根瘤菌的固氮基因转移到其他细菌身上。现在,日本的科研人员已经从土壤中分离出固氮菌,并把它们成功地转接到无菌水稻的根部,通过感染实验,发现可产生固氮能力。此外,通过杂交改良,将来也有可能培育出具有固氮能力的新品种,到那时,水稻、玉米,甚至有更多的农作物将加入固氮植物的行列,能够自己固氮,人们就可以少施用甚至不施用氮肥,人们再也不用担心因为施用氮肥而引起环境污染和资源破坏了。这样不仅可以减少投资,还可以获得农业丰收呢,这是一个多么美好的前景啊!但愿在不久的将来就可以实现。
空气不仅为植物提供了赖以生存的食粮,还对植物的生态作用起着举足轻重的影响。空气的流动就是风,风对植物的作用是多方面的,它能直接或者间接的影响植物的生长和发育。强风能降低植物的生长量。有实验证明,风速在每秒10米时,树木的高度生长量要比风速每秒5米时少1/2,要比无风时少2/3。一般来说,随着风速的加大,会引起植物的叶面积减少、节间缩短、茎的总量减少。造成植物矮化。强风还能造成畸形树冠。在盛行一个方向强风的地带,植物常常都长成畸形:乔木树干向背风方向弯曲,树冠也向背风方向倾斜,形成所谓的“旗形树”。这是因为树木向风面的芽由于受到风的袭击,遭到机械摧残和因水分过度蒸腾而死亡;而背风面的芽由于受风力较小,成活较多,枝条生长较好。因此,向风面不长枝条,或者长出来的枝条受风的压力而弯向背风面,这些都严重影响植物的生长。在强风区生长的树木,一般都有强大的根系,以增强植物的抗风力,否则就要“躺倒休息”了。此外,风还可以帮助某些植物传播花粉,是它们传宗接代必不可少的护理员呢!