法拉第和麦克斯韦

在自然界中,除了电力之外,还有一种和电力十分相似的力——磁力。磁石吸引铁的现象,也早为人们所熟悉。中国古代四大发明之一——指南针, 便是这种力的应用。

磁力的大小,也是库仑通过实验测出的,并由高斯建立了它的定量单位制,故称高斯定律。它与库仑定律、万有引力定律的结构形式几乎没有区别。后来,丹麦物理学家奥斯特发现了电与磁之间的联系。他证明一根通电的导线,会绕着磁极旋转;反之,一个磁铁也有绕一根固定的导线旋转的趋势。1825 年,又有一位法国科学家安培,发现了电磁学的第三个基本定律——安培定律。他证明,通有电流的圆形圈,就像普通的磁铁那样,有吸引和排斥作用。根据这一发现,他认为磁体的微粒中,存在着很小的圆形电流。如果这些微粒的电流都在同一方向流动,即产生磁力。

19 世纪前期,由于科学家们的努力,人类对电力知识的认识有了很大的进步。但是,对电力和磁力的最关键性的研究工作,是由法拉第和麦克斯韦来完成的。

在一些伟大科学家的经历中,很少有像米哈依尔·法拉第那样动人的。他不是名门子弟,也没有受过正规的中等教育,更谈不上念大学。他靠自己的勤奋好学和对自然科学的酷爱,更由于遇到了伯乐式的良师戴维,终于登上了科学的高峰。

19 世纪 20 年代,法拉第在自己的研究笔记中,写着这样一句话:“把磁变为电”。这句话的分量,以及以后被他的实验所证实的伟大意义,是他自己当时怎么也估量不到的。在探索把磁变为电的道路上,开头几年,法拉第也屡遭失败,无论怎样调弄仪器,都无法用一块磁铁来产生电流,也无法用恒定电流通过线圈时产生的磁来形成电流。时间一年一年地过去,法拉第也在不间断地探索。1831 年的一天,发生了这样一件偶然的事:当连接电池的开关突然断开的一瞬间,电流计的指针忽然偏转了一下。法拉第所追求的正是这一现象,这件事当然引起他的注意。他紧紧地抓住这个线索,反复地做了许多实验,终于发现了磁也能产生电力,条件是这个磁必须是动的。

发现了动磁产生电力之后,法拉第又非常形象地描写了电力和磁力是怎样从一个物体传递到另一个物体的。为了对这个现象进行解释,他引入了一个非常重要的概念——场。他认为,任何一个带电体,周围都存在着电场, 任何一块磁铁的周围,也存在着磁场。电场和磁场就是电力和磁力的传递者。

但是,电场与磁场之间倒底有什么关系呢?在 19 世纪前半个世纪中,物理学家们一直在思考着这个问题。正确解答出这个问题的是英国另一位杰出的物理学家詹姆士·麦克斯韦。

从 1854 年开始,麦克斯韦就致力于研究有关电力和磁力的理论。麦克斯韦的研究方向一开始就是很明确的。他要把法拉第等人的一些物理想法写成定量的数学公式。他对法拉第的贡献非常敬佩,整天研读法拉第的实验报告。经过多年的研究之后,麦克斯韦发现当他把四个定律的数学方程式表达出来

之后,发现这些公式与他想达到的目的并不相容,彼此矛盾,不能统一电磁力。为了克服这个困难,麦克斯韦在电磁规律上加上一项电场随时间的变化。于是,整个方程就变得相容了,而且不违反法拉第和安培定律。

物理学发展到这里,标志着人类对电磁力的认识步入了一条新的坦途, 也是整个物理学史上一个非常重要的发展。麦克斯韦的方程式告诉我们几个非常重要的结论:

  1. 电和磁不可分割地出现在同一组基本方程组中,电力和磁力是统一力;

  2. 变化的电场可以引起变化的磁场,变化的磁场又引起新的变化着的电场⋯⋯,这种电磁场在空间的传播叫电磁波;

  3. 电磁波的性质,尤其是它的传播速度和光速完全相等。这一点不能不使人相信,光就是电磁波。

这些结论,是 19 世纪物理学中最伟大的发现之一。