陀螺仪的性能
围绕着一个可转动的轴旋转的任何物体,不管它像儿童玩的陀螺那样 小,还是像地球那样大,都可以称为陀螺仪。陀螺仪的首次实际应用也许应归功于塞逊。他在 1744 年说服英国海军部在海上试验一个旋转的、能为船舶指示出稳定的水平基准线的转子。它装在一个枢轴上,以免因船晃动而受干扰。它是现代飞机上使用的陀螺水平仪的祖先。
在塞逊之后很多年,有一个叫桑的苏格兰人和一个叫富科尔的法国人分别在 1836 年和 1852 年利用陀螺的稳定性来证明地球的自转,但是桑没有钱制造一个足够精确的转子。富科尔成功地制成了这样的转子,并创造了陀螺仪这个名词。
本世纪初,利用大型陀螺仪稳定船舶以防止左右摇晃的研究活动突然增
加。最初的发明者是奥托·施利克。这种方法于 1908 年在英国首次应用,后来被利用小型偏航显示陀螺仪来控制水下鳍板的方法所取代。大约在同一时期,布伦南、谢尔和希洛夫斯基等发明家正在建造能用两个轮子而不是四个轮子行驶的车辆,依靠内部的陀螺仪保持直立,但是他们的工作没有得到社会的承认。
陀螺原理在航海上的另一种应用是陀螺罗经;它现在是除最小的船只以外的所有船只上都有的一种重要仪器。人们普遍认为,这是德国人安许茨一肯普夫的发明(1908 年),不过紧接着美国的斯佩里也发明了陀螺罗经。陀螺罗经能够感测地球的旋转,然后将转轴对准北极,正指北方,甚至船舶在海上摇晃和颠簸时,也能对准。
陀螺仪在空中的应用取得了十分明显的进展。在空中,导航和控制的关键是要有一个精确的垂直基准线。一个单摆是不行的,因为如果它的支承点加速,单摆就会猛烈摆动。在仿真水平仪和自动驾驶仪中,使用一个带垂直轴的陀螺仪,就像一个直立的陀螺一样。飞机在上升或侧滚时跟固定的陀螺轴形成的相对角度会给出一个读数供驾驶员直接利用,也可用作自动控制系统的一个数据。
过去 20 年中,这些航空上的应用,最后发展成了复杂的惯性导航系统。其核心是微型的精密陀螺仪,它能测出每小时零点几度的轻微转动——这种转动比地球缓慢的自转还要小得多。此系统能独立运转,在几千英里的飞行中,不依靠任何外界的参改源,将飞机精确的位置和方向记录下来。