蟹状星云脉冲星

既然中子星是自然界中一种真实的存在,那么它是怎么形成的呢?关于这个问题巴德和茨维基也作了预言,他们认为超新星就是普通星向中子星过渡的联系环节。原来,当时的天文学家已经知道有一种称为新星爆发的天文现象。一颗似乎是普通的恒星会在几天之内亮度增加几十万倍,然后在一年左右的时间内恢复到原来的状态。但人们并不知道,这种现象实际上包括两种不同的爆发。巴德和茨维基首先认识到了这一点,他们把其中一类称为超新星,比起其他的新星,它们的光度还要亮上千倍。这种超新星是天文学上十分罕见的现象,在我们银河系中几个世纪才能观察到一次,因此天文学家只能在河外星系中来寻找超新星,当它们爆发时,一颗星的亮度就可以和整个星系相等,而且在爆发时会有大量物质被抛出,产生一个扩张的气壳,成为明亮的星云。

因此,天文学家虽然在他的一生中很可能见不到一次银河系内的超新星爆发,但是他可以设法寻找超新星爆发后的遗迹——明亮的星云,来回顾当年爆发时的景象。金牛星座中有名的蟹状星云就是他们的观测对象之一,这个星云在法国天文学家梅西叶所编的星云状天体中名列第一。在望远镜中,它形如一只横爬的螃蟹,因此而得名。早在1921年,就有人把蟹状星云的两张前后相隔12年的照片相对照,发现星云正在膨胀,后来又有人根据它的大小和膨胀速度算出这种膨胀大约开始于900年前。因此,如果蟹状星云真是超新星爆发时的遗迹,那么在900年前这里应当发生过一次银河系内的超新星爆发。

这方面的见证到哪里去找呢?1942年,有人提出,中国古代天文记录中有一个事件在时间和地点上都同这个假设的爆发相近,这就是公元1054年,在我国《宋史》上所提到的“客星”。记载是这样写的:“嘉佑元年三月,司天监言‘客星没,客去之兆也’。初,至和元年五月展出东方,守天关。昼见如太白,芒角四出,色赤白。凡见二十三日。”记录说明的时间是1仍4年7月4日,地点是金牛座火星附近。所谓的“客星”亮到白天都能见,持续达23天,到第3年5月才消失。天文现象的变化大多要千百万年才会显出效果,而这颗星却在以年计的时间尺度上达到极盛而后衰减,真可以算是“昙花一现”了,而且它的亮度达到了白昼都能见的程度,可见是宇宙中少见的一次超新星爆发,这样的爆发在人类的历史记载中不到10次。在我们祖国的古代典籍中,保存了世界上最丰富的古代天文记录,为验证现代天体物理的理论,认识恒星晚期演化,作出了不寻常的贡献。

现在,我们可以来大体描述一番恒星演化到晚期而发生的超新星爆发的过程了。恒星经过漫长的主序星阶段,终于耗尽了它的核燃料,核反应炉慢慢熄灭了,冷却了。这是什么意思呢?这意味着恒星内的元素差不多都变成了铁。因为铁的原子核是一种结合得最紧的核,它的能量是最低的,比它轻的原子核相互结合成铁核,就有多余的能量放出来,这就是恒星能量的来源。但是要使铁核相互结合而成为更重的原子核,却不能放出能量,反而要外加能量,所以氢变成了铁,核燃烧就告终。白矮星的主要成分就是核燃烧的“炉渣”——铁。但是2倍太阳质量的恒星因为引力强大,还会继续收缩,当它的密度继续升高时,铁核便不再是最稳定的核了,它会同电子结合而变成含中子较多的核。由于电子同核的结合,承担恒星自身引力的支柱——电子简并压也消失了。当恒星的中心密度达到1011克/厘米3时,这种压力一下子消失。在几分之一秒内,星核中的所有电子和铁核都变成了含很多中子的核或自由中子,星体失去了支撑,处于自由落下的坍缩状态。急剧的收缩又使核心密度急剧上升,这时密度的上升导致了中子简并压异军突起,使坍缩的星体面临巨大的压力而猛然停住。自由落下的巨大动能以冲击波形式向外传出,使星体达到上百亿度的高温。在如此高温和高密度下,基本粒子穿透力极强,在这样的极端条件下,它也只能走上几百米而不能逸出星体,所以坍缩释放的能量只能随中微子的扩散而转移到星的外壳中。星壳的温度上升到2000亿度之高,从而开始了爆炸性的核燃烧,放出更多的热能。由中微子携带和核燃烧产生的巨大能量使星壳变得连引力也束缚不住了,于是发生爆炸,以接近光速的速度把外壳向外炸开,膨胀的星壳的热能则转变为强烈的辐射。这辐射如此之强,在几十天以致上百天的时间内,可达到一个星系的光度。同时,大量核粒子在爆炸的冲击波中加速到极高的速度,成为宇宙射线的重要部分。超新星爆发时那种高温高密度,还为比铁重的元素的合成创造了条件。重元素在超新星的爆发事件中被“炼制”出来,并被抛撒到太空中。当新的一代恒星和行星从星际物质中脱胎而出时,这些星球上便有了从氢到铀以至更重的全部元素。可以说,没有超新星的爆发,便没有重元素生成,也就不会有我们地球上今天这样的生命发生和兴旺,所以说超新星不仅仅是一场宇宙规模的精彩焰火表演,而且是自然界在物质循环中演化发展所不可缺少的一个环节,宋史中记载的显然就是这样一个事件。它所描述的白天都能见到的耀眼光芒,正是超新星爆发时的强烈辐射,今天所见到的膨胀星云,就是爆炸中抛出的星壳。

1968年发表了脉冲星被发现的消息之后,就可以检验,巴德和茨维基的最后一项预言了,普通恒星在超新星爆炸后便形成中子星。如果脉冲星的本质真是中子星,那么在蟹状星云中,也应当有一颗脉冲星。果然,就在蟹状星云的中心附近,射电天文学家很快就发现了一个周期极短的脉冲星。它的周期只有0.033秒,是所有脉冲星中最短的一颗。过了几个星期,光学天文学家又发现星云中心附近有一颗星发出的可见光也有0.033秒的周期变化,显然它们就是同一颗星。到此,30多年前的预言被全部证实了。