星系天文学之父哈勃

18世纪中叶,瑞典的斯维登堡、英国的赖特、德国的康德和朗伯提出,我们所见的银河和恒星构成一个巨大的天体系统,并提出在这个巨大的天体系统之外,在浩瀚的宇宙中还存在着无数这样的天体系统。18世纪下半叶,英国天文学家威廉·赫歇尔用天文观测证实了前一点,并将这个巨大的天体系统称为银河系。但在银河系之外是否存在别的类似银河系的天体系统(河外星系)的问题,在威廉·赫歇尔之后约一个多世纪中始终没有解决。直到20世纪20年代,美国著名天文学家哈勃才率先解决了这个问题。他还对河外星系进行了形态分类,发现了河外星系退行速度与它离我们的距离之间关系的哈勃定律,探讨了河外星系的空间分布……这些成果开创了人们对星系世界的研究,因此他被誉为“星系天文学之父”。

早年生涯

哈勃的全名叫埃德温·鲍威尔·哈勃,1889年11月20日生于美国密苏里州马什菲尔德。哈勃的祖先在17世纪从英国移居美国,他的父亲约翰·鲍威尔·哈勃是一名律师,母亲婚前叫维琴尼亚·李·詹姆斯。哈勃在肯塔基度过了他的童年生涯,后来在芝加哥上高级中学,在校时学习和体育运动两方面都很出色。高中毕业后他获得了一项奖学金进入芝加哥大学,1910年毕业于该校天文系,获理学士学位。他还是该校有名的拳击运动员,一位体育运动教练想训练他同当时世界冠军杰克·约翰逊进行拳击,培养他成为一代拳王,但他却在1910年作为罗兹奖学金获得者来到英国牛津女王学院攻读法学,1912年修完所有法学课程,获文学士学位。1913年哈勃回到美国,在肯塔基州路易斯维尔开了一家法律事务所,但翌年便放弃了这个职位来到芝加哥大学叶凯士天文台,成为弗罗斯特的助手和研究生。1917年他完成了“暗弱星云的照相研究”的学位论文而获博士学位。

美国最有声望的天文学家海尔早年曾与哈勃有一段师生情。哈勃刚跨入芝加哥大学校门时,海尔虽已就任威尔逊山天文台台长但却未完全脱离芝加哥大学和所属的叶凯士天文台,他培养了年青的哈勃对天文学的兴趣。十多年过去了,海尔得知哈勃重返芝加哥大学并出色地完成了天文学博士论文,认为后者很有发展前途,于是以威尔逊山天文台台长的身份邀请后者去该台工作。当时该台1.52米的反射望远镜已投入观测,举世无双的口径2.54米的胡克望远镜也即将建成。哈勃认为威尔逊山的工作条件极佳,但当时美国参加了第一次世界大战,他被征入伍。他打电报给海尔说,一旦他复员便接受海尔的邀请去威尔逊山天文台工作。此后哈勃随美国远征军到法国服役,在军中晋升到陆军少校军衔。1918年11月11日停战日之后,他又随美国占领军留驻德国,直到1919年10月才返回美国。

揭开旋涡星云本质之谜

哈勃一退伍回到美国,即遵前诺赴威尔逊山天文台任职,当时他已达而立之年,始得安心从事日后使之声望卓著的天文研究工作。此后,除第二次世界大战期间曾在美国军队中参与领导弹道学研究,并在马里兰州阿伯丁试验场超声速风洞实验室担任领导工作外,哈勃始终在威尔逊山天文台工作。

从1922年起,哈勃将研究的注意力集中到旋涡星云本质的问题上。这是一个争论已久的问题。早在18世纪中叶,康德就把呈云雾状的星云看成是我们天体系统(银河系)之外的别的巨大天体系统。一个世纪后,德国科学家洪堡又把宇宙中一个个这样的天体系统比喻为大海中的无数小岛,称“宇宙岛”。

18世纪末至19世纪末,人们在宇宙岛是否存在这一问题上的研究走了许多弯路,遇到许多挫折。康德、洪堡等人推测呈云雾状的星云是宇宙岛,但在小望远镜中,看去像云雾状的星云的天体有许多复杂的情况:它们有的是银河系内的星团,仅仅是因为分辨不清才被当成星云;有的是银河系内的气体尘埃云,这种气体尘埃云与宇宙岛实际上是毫不相干的两回事;当然也的确存在作为宇宙岛的星云(后来称为河外星云)。由于这三方面的混淆和测量手段上的局限,宇宙岛的猜测难于得到证实。

20世纪初,人们用照相方法发现了大量旋涡星云,它们形如旋涡状,大多数很暗弱,只有极少数如仙女座大星云(通过照相发现它是一个半侧向对着我们的旋涡星云)等比较明亮。有人认为,这种旋涡星云很可能是宇宙岛。20世纪10年代末,美国天文学家柯蒂斯用“新星测距法”求得仙女座大星云的距离为1000万光年(1光年是指太空中光在1年中所走过的距离,1光年约10万亿千米)。所谓新星测距法是假定仙女座大星云中的新星与银河系中的新星光度相当,即认为两者在单位时间内发出的总光量很相近,只是由于仙女座大星云很远才使其中的新星显得很暗弱,然后推算出该星云的距离。这种方法在原理上并不错,但误差很大,连柯蒂斯本人在公布此结果后也很快加以更正,将仙女座大星云的距离从1000万光年减至50万光年。柯蒂斯认为银河系的直径只有数万光年,所以仙女座大星云远在银河系之外,是银河系之外的别的星系。美国天文学家沙普利认为柯蒂斯的测量不可信,他认为仙女座大星云不在如此遥远的距离上,而他却把银河系的直径定得过大,达30万光年,他认为仙女座大星云只是银河系内的真正的星云状天体。他还引证了荷兰天文学家范玛南提供的观测结果,旋涡星云M101,M33和M81每年以百分之几角秒的速率自转,这样大的角速度意味着这些旋涡星云不可能太遥远,其距离仅数千光年而已,由此沙普利推论旋涡星云都是银河系内的天体。后来人们发现范玛南的测量是错误的,是把某些系统误差当成旋涡星云的自转了,但当时沙普利却把它当做自己见解的重要依据。

1920年4月26日,由当时威尔逊山天文台台长海尔发起,在美国国家科学院召开了“宇宙的尺度”辩论会。沙普利和柯蒂斯代表对立的两方,就银河系的大小和旋涡星云的真相展开面对面的论战。这就是天文学史上著名的沙普利—柯蒂斯大辩论。这场辩论当时胜负未分,旋涡星云究竟是否是银河系之外的别的星系并未有统一的结论。

1923年,哈勃用威尔逊山天文台的口径为2.54米的胡克望远镜拍摄仙女座大星云的照片。由于这架当时世界上最大的望远镜的惊人分辨本领,照片上该星云的外围已被分解为恒星,在这些恒星中他证认出第一颗造父变星。翌年,他又在该星云中证认出更多的造父变星,并在三角座星云M33中也发现了一些造父变星。接着,他用“造父变星测距法”测出了这两个旋涡星云的距离。

什么是造父变星和造父变星测距法呢?造父变星是以仙王座δ为典型星的一类变星。中国古代用传说中的驾车能手造父来命名仙王座δ和它周围的几颗星,其中仙王座δ称造父一,因此以它为典型星的变星便被称为造父变星。这类变星是因星体本身的周期性膨胀和收缩而产生光度变化的,它的光度变化有一个重要特点,就是其光变周期和其光度之间存在确定的对应关系,这种对应关系是沙普利在1915年首先建立的。于是,通过测出某造父变星的光变周期,它的光度也就可以定出。某造父变星的光度定出后,再用观测定出其视星等,就可以定出它的距离。这就犹如在晴空万里的夜晚,从海船上遥望海岸边的一盏航标灯,如果该灯多少烛光已经确定,海船上所见到的它的视亮度就只依赖于海船离它的距离了,于是有经验的水手就可以根据他所见到的此航标灯的视亮度估计出海船离海岸有多远。使用造父变星的这种测量距离的方法称为造父变星测距法。

20世纪10年代后期,沙普利在银河系内的许多球状星团中发现了造父变星。由于球状星团离我们很远,它本身的尺度与它离我们的距离相比是可以忽略不计的,因此如果测出了球状星团中任何一颗造父变星的距离也就测出了该球状星团离我们的距离。根据这一点,沙普利应用“造父变星测距法”测出了许多已发现造父变星的球状星团的距离。如果他及时去寻觅旋涡星云中的造父变星,那么首先定出旋涡星云距离的也应该是他。但他却没有这样做,而哈勃却进行了这至关重要的一步,1924年,哈勃用“造父变星测距法”测量了仙女座大星云和三角座星云M33的距离为93万光年。当时,已知银河系的直径在10万光年左右,这意味着这两个旋涡星云远在银河系之外,是与银河系相当的独立的星系。哈勃将这一研究成果写成了论文。

1925年元旦,美国天文学会和美国科学促进学会在华盛顿联合召开了学术会议,哈勃并未到会,但他的上述论文被带到会上得以宣读。这篇论文一经宣读,在座的许多天文学家都已明白,关于旋涡星云本质的大辩论已告结束,宇宙岛的推测已获证实。当时,几年前进行此项大辩论的代表人物沙普利和柯蒂斯都在场。哈勃的论文分享了美国科学促进学会为这次学术会议设立的最佳论文奖。同年,该论文以“旋涡星云中的造父变星”为题发表在《美国天文学会会刊》上。

1925年,哈勃又用“造父变星测距法”测定了人马座星云NGC6822的距离,证实了该旋涡星云也是一个河外星系。同年,这一成果以“NGC6822,一个遥远的恒星系统”为题发表在美国《天体物理学报》上。哈勃的这些工作,翻开了人类研究大宇宙的新的一页,从此人们的视野超出了银河系,进入了星系世界。

绘制“音叉图”

1922年,哈勃发表了论文“弥漫银河星云的一般研究”,文中将银河星云分为行星状星云和弥漫星云两大类。他还指出有一类非银河星云存在,虽然他当时无法确认它们位于银河系之外,但却发现它们在空间分布上远离银河所在平面(银道面),且离这个平面越远,所见到的非银河星云越多。在该文中,他还对非银河星云作了初步的分类。

1925年,国际天文学联合会在英国剑桥召开学术会议,哈勃在会上作了一篇有关河外星云形态分类的论文报告。当时他已认识到三年前他在论文“弥漫银河星云的一般研究”中所提到的非银河星云实际上就是位于银河系之外的河外星云(亦即河外星系),所以他在报告中已明确地将以前称为的非银河星云改名为河外星云。这篇报告经修改、整理后发表在1926年的《天体物理学报》上,论文题目是“河外星云”。

在“河外星云”一文中,哈勃指出大多数河外星云都有一个在星云中占主导地位的球状核心,整个星云对它表现出某种旋转对称性,这类河外星云称为规则星云。它又可以分为椭圆星云和旋涡星云两类:椭圆星云以符号E表示,依据其椭率不同,又分为E0,E1,……E7共8个次型;旋涡星云则又被分为正常旋涡星云和棒旋星云两族,前者以符号S表示,后者以符号SB表示,后者与前者的最大不同在于星云的中间有一棒状物,这两族旋涡星云每族按旋臂由紧到松的程度不同均分为a,b,c三个次型。

在“河外星云”一文中,哈勃认为除规则星云外,还有一类星云不具备中心核和某种旋转对称性,其形状往往不规则,这类星云称不规则星云,以符号Irr表示之,不规则星云只占河外星云总数的3%以下。

后来,哈勃又对这一分类体系作了发展,并在1936年他出版的《星云王国》一书中作了更详细的描述。在该书中,他首次给出了一个河外星云分类图,由于此图很像一个音叉,所以后人将此图取名为“音叉图”。此“音叉”的交接处列出了一种S0型星云,它是无臂的旋涡星云,哈勃当时认为它是一种多少带有假设性的类型,但后人果然发现了许多S0型星云,人们将它命名为透镜状星云。此外还存在不规则星云,在“音叉图”中未予列出。

由于河外星云的本质便是河外星系,所以哈勃当时所称的椭圆星云、正常旋涡星云、棒旋星云和不规则星云后来分别改称为椭圆星系、正常旋涡星系、棒旋星系和不规则星系。上述分类则被称为星系形态的哈勃分类,亦称星系形态的哈勃序列。哈勃序列表明众多的星系乃是同一家族中互有联系的成员。它在看来纷乱庞杂的星系王国中引入了秩序,仿佛为人们进入这个神秘的世界提供了一幅总体导游图。

20世纪30年代以后,陆续发现了多种特殊星系,这些星系的星系核中往往有强烈的活动。这类星系无法纳入星系形态的哈勃分类之中。所以,人们进一步认识到,哈勃对星系形态的分类只是对正常星系的一种分类。但由于正常星系在星系总数中占极大多数,因此除了对特殊星系的专门性研究工作之外,星系形态的哈勃分类至今还常被采用。

哈勃定律

哈勃对星系天文学的又一重大贡献是发现了河外星系退行速度与距离之间存在着正比关系,即发现了著名的哈勃定律。

20世纪10年代,美国天文学家斯莱弗用装在大望远镜上的高色散摄谱仪拍摄了数十个旋涡星云的光谱,发现它们大多存在谱线红移,根据多普勒效应,这种红移可解释为这些星云在不断退行,即远离我们而去。

哈勃在1925年确认旋涡星云是河外星云亦即河外星系之后,他对这种星云普遍存在谱线红移问题也发生了兴趣,他不仅也参与测量它们的谱线红移和退行速度,而且采用“造父变星测距法”以及其他方法,努力测量它们的距离。1929年,他在《美国国家科学院会议文集》上发表了“河外星云距离与视向速度的关系”的重要论文,文中分析了46个已求得其退行速度的河外星云,其中已定出其距离的为24个,对于另外22个河外星云,他采用将其中几个组合成一群的方法,求出其平均退行速度,并根据其平均视星等求出其平均距离。通过分析这些资料,他指出河外星云的退行速度V和它的距离D之间存在着正比关系,即V=HD

此式被称为哈勃定律,式中的比例常数H被称为哈勃常数。在该论文中,他还给出了河外星云退行速度与其距离之间存在线性关系的一幅图。

由于所涉及的河外星云,其距离最远的仅600多万光年,其退行速度则不足1000千米/秒,所以哈勃在1929年发表的重要论文的结尾中这样说:“目前的讨论所得的线性关系乃是有限距离范围内的某种初级近似”,也就是说他当时还不能确定,对于距离更远、退行速度更大的河外星云而言,哈勃定律是否依然成立。因此,哈勃定律发表后,哈勃立即与另一位美国天文学家哈马逊合作,利用威尔逊山天文台当时世界上最大的口径2.54米的胡克望远镜观测距离更远、退行速度更大的河外星云。1930年,哈马逊测出了退行速度高达20000千米/秒的某河外星云的距离。翌年,哈勃和他在《天体物理学报》上发表了长篇论文“河外星云的速度-距离关系”,指出对退行速度高达20000千米/秒的河外星云而言,哈勃定律依然适用。1936年,他们两人观测了退行速度高达40000千米/秒的大熊座2号星系团(遥远的由河外星系构成的集团),测定了该星系团的距离。1948年口径5.08米的反射望远镜在帕洛马山天文台落成,翌年哈马逊又用它观测了退行速度高达60000千米/秒的长蛇座星系团。这些观测都表明,对如此之大的退行速度的星系团而言,哈勃定律依然成立。1953年,哈勃在《英国皇家天文学会月刊》上发表了论文“红移定律”,总结了以往的工作,自信地表示,河外星云退行速度与其距离成正比的哈勃定律是得到了充分检验的客观规律。

哈勃定律的发现,有力地推动了现代宇宙学的发展。现代宇宙学应用广义相对论这一新引力理论为武器来研究宇宙的结构和演化。广义相对论刚问世,爱因斯坦便在1917年发表了论文“用广义相对对宇宙学所作的考查”,这是第一篇应用广义相对论来考察宇宙的论文,它是现代宇宙学的奠基之作。但该文建立的静态宇宙模型并不正确。爱因斯坦为获得此模型,在求解广义相对论的引力场方程时,不惜在该方程中增加了具有宇宙斥力性质的“宇宙项”,使引力与宇宙斥力刚好达到平衡,从而获得该方程的静态解,建立了一个静态宇宙模型。

1922年,前苏联数学家弗里德曼重新求解了爱因斯坦的引力场方程,发现此方程不仅存在静态解,而且存在两类膨胀解和一类振荡解,从而建立起弗里德曼宇宙模型。

1927年,比利时天方学家勒梅特也重新求解了爱因斯坦的引力场方程,他找到了一个新解,据此推出了一个随时间而膨胀的宇宙模型。

1929年哈勃定律的问世,表明爱因斯坦的静态宇宙模型与事实不符,爱因斯坦后来也承认为寻求静态解而在广义相对论的引力场方程中增加具有斥力性质的“宇宙项”是他一生中做的最大的一件蠢事。

哈勃定律不排斥弗里德曼宇宙模型和勒梅特模型,宇宙确实在膨胀,各部分正在彼此远离。由于我们的宇宙是四维时空的宇宙,它的膨胀很难直观地加以描述,但可以通过下面的类比来理解。一个上面有许多斑点的气球被人吹大时,该气球上任何两个斑点间的距离都在增大,不论从哪一个斑点来看,所有其他的斑点都在远离它而去,且越远的斑点远离它的速度越大。宇宙中,越远的星系以越大的速度退行与这种情况很相似。

1929年哈勃定律刚问世时,哈勃定律V=HD中的H值被取为500千米/(秒·百万秒差距)。由于此值中的千米和百万秒差距均为长度单位,而且1百万秒差距=3.086×1019千米,所以H值的倒数1H具有时间的量纲,可以算出1H约等于20亿年。有人将1H命名为哈勃时间。在具有初始奇点的膨胀宇宙模型(例如著名的热大爆炸宇宙模型)中,如假定宇宙始终在以与当今相同的速率膨胀,则1H的含义相当于宇宙从其初始直至当今所经历的时间,即相当于宇宙年龄。然而,有趣的是,尽管学者们对哈勃时间1H的含义各持己见、争论不休,但哈勃本人对此从不发表任何高见,他也从未表示过1H就是宇宙年龄。

还需指出,上面算出的宇宙年龄20亿年显然太小,它甚至比太阳系年龄和地球年龄都小得多,这使许多人感到奇怪。后来人们发现,哈勃所取的H值偏大,经过许多学者的长期测定,H值现已缩小到约50千米/(秒·百万秒差距),即已缩小到哈勃当初测定的值的十分之一。于是,哈勃时间从20亿年增加到200亿年。许多人认为,把此值视为宇宙年龄也许更为合理。

从哈勃定律还引出了一个重要物理量。按照相对论,任何物体的运动速度不可能超过光速,故哈勃定律中星系退行速度V的上限为光速C,此时的距离D被称为哈勃距离DH,从哈勃定律V=HD不难看出DH=1H·C即它是哈勃时间1/H与光速的相乘积。当H取为50千米/(秒·百万秒差距)时,哈勃距离DH约等于200亿光年。它的物理意义是,观测者所能见到的宇宙尽头,此处的星系在以光速远离我们。与哈勃时间1H相类似,尽管哈勃距离这一物理量在现代宇宙学中至关重要,但哈勃本人同样对它缄口不语。

河外星系的空间分布

20世纪30年代,哈勃致力于河外星系空间分布的研究,在这方面的工作成果被认为是他对星系天文学所作出的第四项重要贡献。

在天文学中,以银道(穿过银河中间的天球上的大圆)为基本大圆、南北银极(天球上与银道角距离处处等于90°的两点)为基本点的天球坐标系称为银道坐标系。在此坐标系中,南北银极与银道上不同点连成的天球大圆构成了银经圈,在同一银经圈上银经均相同;从银道向南北银极两个方向量度的角距离称银纬,向北银极方向量度的银纬取为正,向南银极方向量度的银纬取为负,与银道大圆平行的许多小圆构成银纬圈,同一银纬圈上的银纬值相同。银道坐标系的这种定义方法和地球上地理经纬度的定义方法相当类似,所以实际上并不难理解。

哈勃以银道坐标系为依据,研究了河外星系在天球不同方向上的视分布。1937年,他在他出版的《星云王国》一书中给出了一幅十分有名的河外星系分布图。图的中间栏腰一分为二的横线0°—0°代表银道,银道下端0°,30°,60°…330°的刻度代表银经;银道上下两侧与银经圈相交的横线分别表示+30°,+60°,-30°,-60°等不同银纬的银纬圈。图中的小黑点表示星系分布具有正常数目,大黑点表示星系分布超过正常数目,且黑点越大、越集中表示超过越多,空圆圈表示星系分布不足,短横线表示那些地方未发现星系,银道附近两支曲折线表示银河所在的范围,图内左右两侧特别是南银纬左右两侧有较多的空白部分,这是哈勃所在的威尔逊山天文台无法观测到的南天区域,那些地方的星系分布未作统计。在此图中,银河内和银道两旁根本看不到星系,这被称为哈勃隐带,在这之外的低银纬地区空圆圈甚多,这是星系分布严重不足的地区,而高银纬地区星系的分布则明显超过正常数字。

河外星系在天球不同方向上的这种视分布可作如下解释:河外星系在天球不同方向上的分布实际上是相当均匀的,但由于我们在银河系之内去观测它们,视线必需先穿过银河系,银道两侧不仅有大量暗星,而且有很多星际消光物质,它们挡住了我们的视线,使我们无法看到河外星系,从而造成了天文学上所称的“哈勃隐带”。随着银纬的增大,星际消光物质减少,高银纬天区星际消光物质已微乎其微,因而河外星系随银纬的增加而增多。

除了研究河外星系在天球不同方向上的视分布外,研究河外星系空间分布的另一课题是探讨它们随距离分布的方式。哈勃利用威尔逊山天文台口径2.54米的胡克望远镜开展了一项宏大的观测计划。1934年他在《天体物理学报》上发表了长篇论文“河外星云的分布”,该文可看成是他这方面研究工作的代表作。他的基本结论是,从统计平均的角度看,河外星系在不同距离上的分布是均匀的,因此它应被看成是大尺度空间中物质分布的基本单元。他还试图通过测定暗至一定星等的河外星系的计数,来探讨空间曲率问题,但由于涉及的因素十分复杂而未能获得明确的结论。

硕果累累

除上文专门论述四个方面的杰出贡献外,哈勃在天文学上还有许多其他贡献,例如:

(1)阐明了发射星云和反射星云的根本区别。在哈勃之前,已发现银河系内由气体、尘埃物质构成的弥漫星云,有的其光谱是暗黑背景上的发射线光谱,有的其光谱则是七色彩带背景上的吸收线光谱。具有这两种不同光谱的星云分别被称为发射星云和反射星云。1922年,哈勃发表了论文“弥漫银河星云的一般研究”,正确地指出,之所以产生这两种星云是由于其中存在着光谱型不同的照亮星,发射星云中有光谱型为O、B0、B1型的表面温度很高的恒星,而反射星云中只有表面温度转低的光谱型为B2直至M型的恒星。本世纪30年代末,丹麦天文学家斯特龙根提出了高温恒星使星云中的氢电离形成发射星云的理论,进一步解释了这个问题。至于反射星云,因其中的低温恒星不足以激发星云中的氢电离,产生发射光谱,星云只是简单地反射该恒星的光,所以其光谱只是该恒星光谱(七色彩带背景上的吸收线光谱)的简单复制。

(2)率先发现有的银河星云是超新星爆发的遗迹。1928年,在他发表的“新星或暂现星”一文中,指出蟹状星云正在迅速膨胀,他测定了它的膨胀速率,推算出从很小体积膨胀到目前尺度需要900年,同时他又考虑到位置上的对应性,率先大胆地提出这一银河系内的弥漫星云是中国宋代记录下来的公元1054年超新星爆发的遗迹。这一见解现已得到公认。

(3)1930年,首次精确测量了椭圆星系的面亮度轮廓(从中心向外亮度是如何递减的),他所建立的面亮度轮廓模型后来被称为椭圆星系的哈勃光度轮廓。

(4)在近邻的河外星系中率先开展不同种类恒星和恒星集团的详细研究。其中对这些星系中造父变星的发现和研究形成了测量这些星系距离的最重要方法。1932年,他在仙女座大星云中证认出一些球状星团,并发现它们的平均光度似乎比我们银河系中的球状星团暗4倍。后来,德国天文学家巴德发现这实际上是由于当时测定的仙女座大星云的距离不当造成的。

(5)在1935年及此后发表的数篇论文中,研究了星系中尘埃带的不对称性,辨别星系哪一侧离我们较近,进而确定这些星系旋臂的旋转方向。

(6)与在威尔逊山天文台工作的德国天文学家巴德共同研究玉夫座星系和天炉座星系,发现它们是矮椭圆星系,即光度相当低的椭圆星系。

1948年帕洛马山天文台的5.08米反射望远镜落成后,他第一个使用它开展专业性的天文观测,并花费大量时间制订使用该望远镜的研究计划。他还担任了威尔逊山天文台和帕洛马山天文台的研究委员会主席,主要负责制定帕洛马山天文台的大施密特望远镜(1948年落成)的巡天观测计划。该望远镜的主镜口径为186厘米,改正镜口径为122厘米,建成后十二年中它一直是世界上最大的折反射望镜,直到1960年才被德国建成的一架施密特望远镜所超过。由于哈勃等人的筹划和组织,这架大施密特望远镜的巡天工作开展得十分出色,著名的帕洛马天图正是使用该望远镜进行巡天工作的结晶。

哈勃的伟大业绩在其生前就已获得公认,他曾获许多荣誉,如1935年在美国获巴纳德金质奖章,1938年在美国获富兰克林金质奖章,1939年获英国皇家天文学会金质奖章等。

哈勃毕生勤奋,晚年深受心脏失调带来的痛苦,但他依然坚持不懈开展研究工作。1953年秋,正当他准备前往帕洛马山天文台用5.08米望远镜进行为期四夜的天文观测时,突然患脑血栓于9月28日与世长辞。

哈勃才思敏捷,富有想像力,善于在研究工作中择定主攻方向并把握问题的关键;处事细心慎密,注意寻求充分的论据,有人认为这与他早年曾受到的法律训练有关。他使用的研究方法主要是归纳方法,在搜集大量观测资料的基础上进行归纳和总结,从中获得某些普遍结论。当然分析的方法有时他也采用,但相对来说用得较少。他用他的研究方法所获得的卓然超群的成就,在现代天文学中几乎无人可与之相媲美。

哈勃有广泛的兴趣爱好。他身高1.88米,爱好体育运动,在芝加哥大学求学时就是一位重量级拳击手,在牛津大学求学时曾被选为校径赛队员,还在一场表演赛中与法国拳王卡庞捷交手。他还是一名假饵钓鱼的能手,在美国和英国的一些地方,都有他垂钓的足迹。1924年和伯克小姐结婚后,一段时间中常与妻子及一些好友外出观光旅游。他还喜欢收集珍本图书,1938年当选为美国洛杉矶附近的亨廷顿图书馆和艺术馆的理事。遵其遗嘱,他的科学史古籍珍本赠送给了威尔逊山天文台。