激光武器篇

激光武器

概述

激光武器是一种利用定向发射的激光束直接毁伤目标或使之失效的定向能武器。

武器系统主要由激光器和跟踪、瞄准、发射装置等部分组成,目前通常采用的激光器有化学激光器、固体激光器、CO2激光器等。

激光武器具有攻击速度快、转向灵活、可实现精确打击、不受电磁干扰等优点,但也存在易受天气和环境影响等弱点。

激光武器已有30多年的发展历史,其关键技术也已取得突破,美国、俄罗斯、法国、以色列等国都成功进行了各种激光打靶试验。

低能激光武器已经投入使用,主要用于干扰和致盲较近距离的光电传感器,以及攻击人眼和一些增强型观测设备;高能激光武器主要采用化学激光器,按照现有的水平,今后5~10年内可望在地面和空中平台上部署使用,用于战术防空、战区反导和反卫星作战等。

特点和分类

不同功率密度,不同输出波形,不同波长的激光,在与不同目标材料相互作用时,会产生不同的杀伤破坏效应。用激光作为“死光”武器,不能像在激光加工中那样借助于透镜聚焦,而必须大大提高激光器的输出功率,作战时可根据不同的需要选择适当的激光器。

激光器的种类繁多,名称各异,有体积整整占据一幢大楼、功率为上万亿瓦、用于引发核聚变的激光器,也有比人的指甲还小、输出功率仅有几毫瓦、用于光电通信的半导体激光器。

根据作战用途的不同,激光武器可分为战术激光武器和战略激光武器两大类。

按工作介质区分,目前有固体激光器、液体激光器和分子型、离子型、准分子型的气体激光器等。同时,按其发射位置可分为天基、陆基、舰载、车载和机载等类型,按其用途还可分为战术型和战略型两类。

战术激光武器

战术激光武器是利用激光作为能量,是像常规武器那样直接杀伤敌方人员、击毁坦克、飞机等,打击距离一般可达20公里。这种武器的主要代表有激光枪和激光炮,它们能够发出很强的激光束来打击敌人。

1978年3月,世界上的第一支激光枪在美国诞生。激光枪的样式与普通步枪没有太大区别,主要由四大部分组成:激光器、激励器、击发器和枪托。

国外已有一种红宝石袖珍式激光枪,外形和大小与美国的派克钢笔相当。但它能在距人几米之外烧毁衣服、烧穿皮肉,且无声响,在不知不觉中致人死命,并可在一定的距离内,使火药爆炸,使夜视仪、红外或激光测距仪等光电设备失效。还有7种稍大重量与机枪相仿的小巧激光枪,能击穿铜盔,在1500米的距离上烧伤皮肉、致瞎眼睛等。

战术激光武器的“挖眼术”不但能造成飞机失控、机毁人亡,或使炮手丧失战斗能力,而且由于参战士兵不知对方激光武器会在何时何地出现,常常受到沉重的心理压力。因此,激光武器又具有常规武器所不具备的威慑作用。

1982年英阿马岛战争中,英国在航空母舰和各类护卫舰上就安装有激光致盲武器,曾使阿根廷的多架飞机失控、坠毁或误入英军的射击火网。

战略激光武器

战略激光武器可攻击数千公里之外的洲际导弹;可攻击太空中的侦察卫星和通信卫星等。

1975年11月,美国的两颗监视导弹发射井的侦察卫星在飞抵西伯利亚上空时,被前苏联的“反卫星”陆基激光武器击中,并变成“瞎子”。因此,高能激光武器是夺取宇宙空间优势的理想武器之一,也是军事大国不惜耗费巨资进行激烈争夺的根本原因。

反战略导弹激光武器的研制种类有化学激光器、准分子激光器、自由电子激光器和调射线激光器。自由电子激光器具有输出功率大、光束质量好、转换效率高、可调范围宽等优点。但是,自由电子激光器体积庞大,只适宜安装在地面上,供陆基激光武器使用。

作战时,强激光束首先射到处于空间高轨道上的中断反射镜。中断反射镜将激光束反射到处于低轨道的作战反射镜,作战反射镜再使激光束瞄准目标,实施攻击。通过这样的两次反射,设置在地面的自由电子激光武器,就可攻击从世界上任何地方发射的战略导弹。

高能激光武器是高能激光武器与航天器相结合的产物。当这种激光器沿着空间轨道游弋时,一旦发现对方目标,即可投入战斗。由于它部署在宇宙空间,居高临下,视野广阔,更是如虎添翼。

在实际战斗中,可用它对对方的空中目标实施闪电般的攻击,以摧毁对方的侦察卫星、预警卫星、通信卫星、气象卫星,甚至能将对方的洲际导弹摧毁在助推的上升阶段。

战术激光武器的突出优点是反应时间短,可拦击突然发现的低空目标。用激光拦击多目标时,能迅速变换射击对象,灵活地对付多个目标。

激光武器的缺点是不能全天候作战,受限于大雾、大雪、大雨,且激光发射系统属精密光学系统,在战场上的生存能力有待考验。

陆军的快速发射高炮的炮管寿命短,连续发射几分钟后就要更换,而激光武器不存在多次发射的寿命问题。可以预计,未来在目前弹炮结合防空武器系统的基础上,将出现将新型防空导弹。高炮和激光武器三结合的对空防御系统。

其中,激光武器主要拦截从低空、超低空突然来袭的近距离目标,这有可能大大提高对精确武器的拦截溉率,解决当前存在的极近程防空问题,并可用于保卫重要目标,如重要机构、指挥中心、通讯和动力中枢等。

研制的激光武器的体积一段较大,重量较重,所以各国首先考虑舰载应用。发达国家的大型水面舰只已开始采用核能作为动力,中型水面舰只的电动化改进也已进入实质阶段,这都为激光武器在舰艇上的应用铺平了道路。

激光具有单色性,基谱线宽度很窄。普通光源中氪灯的谱线宽度为千分之五埃,算最窄的了,但氦氖激光器产生的激光谱线宽度只有千万分之一埃。就是说,激光的单色性比氪灯提高了几十万倍。

激光能够向一个方向辐射,散开角度只有几分,甚至小到一秒。激光的高方向性使它在军事上很受重视。

高度集束的激光,能量也非常集中。在日常生活中我们认为太阳是非常亮的,但一台巨脉冲红宝石激光器发出的激光却比太阳还亮200亿倍。

当然,激光比太阳还亮,并不是因为它的总能量比太阳还大,而是由于它的能量非常集中。红宝石激光器发出的激光射束,能穿透一张1/3厘米厚的钢板,但总能量却不足以煮熟一个鸡蛋。

激光作为武器,有很多独特的优点。首先,它可以用光速飞行,每秒30万公里,任何武器都没有这样高的速度。它一旦瞄准,几乎不要什么时间就立刻击中目标,用不着考虑提前量。另外,它可以在极小的面积上、在极短的时间里集中超过核武器100万倍的能量,还能很灵活地改变方向,没有任何发射性污染。

激光武器分为三类:一是致盲型。前面我们讲过的机载致盲武器,就属于这一类。二是近距离战术型,可用来击落导弹和飞机。1978年美国进行的用激光打陶式反坦克导弹的试验,就是用的这类武器。三是远距离战略型。这类的研制困难最大,但一旦成功,作用也最大,它可以反卫星、反洲际弹道导弹,成为最先进的防御武器。

激光怎样击毁目标呢?科学家们认为有两个方面:一是穿孔,二是层裂。所谓穿孔,就是高功率密度的激光束使靶材表面急剧熔化,进而汽化蒸发,汽化物质向外喷射,反冲力形成冲击波,在靶材上穿一个孔。所谓层裂,就是靶材表面吸收激光能量后,原子被电离,形成等离体“云”。

“云”向外膨胀喷射形成应力波向深处传播。应力波的反射造成靶材被拉断,形成“层裂”破坏。除此以外,等离子体“云”还能辐射紫外线或X光,破坏目标结构和电子元件。

激光武器作用的面积很小,但破坏在目标的关键部位上,可造成目标的毁灭性破坏。这和惊天动地的核武器相比,完全是两种风格。

超导激光武器

激光武器耗能大,它要求在瞬间提供数十亿到数百亿焦耳的能量。而且目前的贮能装置所贮存的能量都非常有限,很难满足这一要求。

超导技术的发展,为激光武器提供了新的能源。采用由超导材料做成的超导闭合线圈就是一种理想的贮能装置。因为在超导线圈中的电流是一种持久的电流,只要将线圈保持超导状态,则它所贮存的电磁能便会毫无损耗地长期保存下去,并可随时把强大的能量提供给激光武器。

激光武器一旦有了超导贮能器,就如虎添翼,好比是有了一个机动灵活而又容量无比的弹药库,可时刻保持高度的战备状态。一旦受到敌方飞机、坦克、导弹等的侵犯,便可随时给予有力的回击。

低能激光武器

它又叫激光轻武器或单兵激光武器。其特点是激光能量较低,是属于小型激光武器。它主要用于对付单个的敌人,可使对方眼睛失明、丧失战斗力直至死亡;同时也可使对方的激光测距仪及各种夜视仪的光敏元件受损或失灵。当前的低能激光武器主要包括激光枪、激光手枪、激光致盲武器等。

激光枪能在近距离内使人致死或致伤,射穿钢盔,使某些武器装备遭到损坏;在相距1500米处能致瞎人眼,烧焦皮肉,烧着衣服、房屋、树木、花草等,并能使炸药在顷刻之间受剧热而起火爆炸……

高能激光武器

高能激光武器又叫激光炮,简称光炮。它的功率输出达到几百至几千千瓦,因此不能使用一般的小功率激光器,而必须使用功率强大的高能激光器。

在高能激光武器系统中,必须通过反射镜把激光束聚集起来,形成一根很细的光柱,并借助于精密的激光束瞄准系统来对目标进行跟踪。

激光炮的用途

1.打飞机。

2.反导弹。

3.反卫星。

4.反坦克。

此外还可以用激光炮在敌方的森林、山区及城市中进行大面积纵火。因此激光炮也是一种新型的纵火武器。激光炮的类型一是折叠式的。其外形很像火箭炮,它那并排着的管子,正是多只巧妙地折叠起来的大功率气体激光器。由于这种激光炮体积庞大,笨重,附加设备多,因此常把它装在坦克、汽车、舰艇及大型飞机上,可用它来攻击敌方的坦克、飞机。反舰导弹、鱼雷以及贴近海面飞行的巡航导弹等。

二是固定式的。它与普通加农炮有点相像,但炮筒较短小。人们往往把这种激光炮分散隐蔽在树林深处及草丛中,使敌方防不胜防。

三是轻型的。这种激光炮与普通“八二”式迫击炮有点相似,炮筒也较为短小。这种炮相当轻便,连同炮筒、炮座及驱动电源加在一起,也不过几十千克。

激光炮可以连续快速发射。当前的脉冲激光炮,可以在1秒钟内连续射出上千发“光弹”。为了充分发挥激光炮命中率高的威力,在使用中必须有目标跟踪雷达和目标导引雷达与之紧密配合,协同作战。

强激光武器

强激光武器是利用高能激光束摧毁飞机、导弹、卫星等目标或使之失效的定向能武器。亦称高能激光武器或光炮。它主要由高能激光器、精密瞄准跟踪系统和光束控制与发射系统组成。高能激光器是强激光武器的核心,用于产生高能激光束。

美国要求高能激光器的平均功率至少为2万瓦或脉冲能量达3万焦耳以上。有关国家研究的高能激光器,有二氧化碳、化学、准分子、自由电子、核激励、X射线和γ射线激光器等。

精密瞄准跟踪系统用来捕获、跟踪目标,引导光束瞄准射击,并判定毁伤效果。强激光武器是靠激光束直接击中目标并停留一定时间而造成破坏的,所以对瞄准跟踪的速度和精度要求很高。

已在研制的有红外、电视和激光雷达等高精度的光学瞄准跟踪设备。光束控制与发射系统的作用是将激光束快速地聚焦到目标上,并达到最佳的破坏效果。其主要部件是反射率很高、耐高能激光辐射的大型反射镜。已在研制的有直径4米甚至更大的反射镜,并积极发展用于克服大气影响的自适应光学系统。

强激光武器的优点是:激光束以光速传播,射击时一般不必考虑提前量,命中率极高;激光束质量近于零,几乎没有后坐力,能迅速变换射击方向,可在短时间内拦击多个目标。其弱点是:激光束发散角随着射程的增大而加大,使射到目标上的激光束功率密度也随之降低,毁伤力减弱,使有效作用距离受到限制。

使用会受到环境影响。如大气会耗散激光束的能量,并使其发生抖动、扩展和偏移。恶劣天气(雨、雪、雾等)和战场烟尘、人造烟幕对其影响更大。强激光武器拦截低空快速飞机和战术导弹,在反战略导弹、反卫星以及光电对抗等,能发挥独特作用。但它不能取代其他武器,而是需要同其他武器配合使用。

强激光武器的研究始于20世纪60年代初。开展这一领域研究的国家主要有美、苏、法、联邦德国等,美、苏两国投入的力量最大。发展强激光武器要解决的技术难题有:研制性能优异的高能激光器;发展高精度瞄准跟踪系统;研究激光破坏目标的机理和克服大气效应;研制大型反射镜和自适应光学系统以及工程组装和配备自动化指挥、控制、通信系统等问题。

美国对强激光武器一直很重视,积极发展各项单元技术,同时研制了一些试验样机,进行过演示性的验证试验。例如,1978年,用氟化氘化学激光器击落过一些“陶”式反坦克导弹;1979年,用激光照射模拟的洲际弹道导弹助推器,使之变形、破裂;1983年5月,用机载二氧化碳激光器击落5枚“响尾蛇”空空导弹,9月又击落3架模拟攻击军舰的巡航导弹的低空飞行靶机。

苏联对发展强激光武器的年研究费用约为美国的3~5倍,发展水平与美国大致相当。

机载激光武器

波音公司在一架经过改装的美空军洛克希德-马丁C-130H“大力士”运输机上安装了一台高功率“化学氧-碘激光器”,并与先前安装的光束控制系统相连接,完成了ATL系统的组装。

直径为1.27米的激光旋转炮台从机腹伸出,能发出宽度约10厘米的激光束,并在15公里的战术距离内命中地面目标。激光束的瞄准点和作用时间都可以调整,因此对目标的破坏程度也能控制。

若是瞄准车辆的油箱,可以彻底摧毁目标,若是以车胎为目标,只会令车辆动弹不得,不会对车内设备和驾驶员造成伤害。

ATL系统可在几分钟内结束战斗,在人口稠密地区或城市作战条件下将发挥重要的作用,可以最大限度的避免平民伤亡,对敌人予以“点杀”。

舰载激光武器

研制国家:美国名称型号:舰载激光武器研制单位:美国海军研究办公室、托马斯•杰斐逊国家加速器实验室能量分部、空军研究实验室和联合防御技术办公室。

20世纪80年代末,美国海军成功地进行了舰载中波红外高级化学激光武器(MIRACL)的陆上试验。可是,正当人们等待MIRACL激光武器的舰载试验消息时,美海军却于90年代中期宣布放弃MIRACL的进一步研制和试验计划,而转向高能自由电子激光武器的研究上。美海军此举,引起各国广泛关注,也标志着其舰载高能激光武器进入一个面向21世纪的全新发展阶段。〕为了将来能使用激光武器,美国海军已经计划在包括下一代航母(CVN21)在内的几种新型战舰上安装大功率的发电设备。当激光武器研发成功,并改进和生产出来以后,就会在这些战舰上部署和使用。

发展演变

美国海军舰载高能激光武器研制可追溯到70年代初。1997年,美海军着手研制MIRACL中波红外高级化学激光武器,其中的主要部件包括氟化氘(DF)中波红外化学激光器功率(220万瓦)和“海石”光束定向仪(孔径1.8米)等。

经3年时间组装起来的MIRACL高能激光武器于1987~1989年间,在白沙激光武器试验场进行了一系列打靶试验,其中包括摧毁一枚飞行中的2.2马赫的“旺达尔人”导弹的试验。

按计划,美海军准备将该系统装在“宙斯盾”巡洋舰MK45炮位上,进一步进行海上试验。可是,美海军却于90年代中期宣布放弃进一步执行MIRACL计划,而重新启动一项高能自由电子激光武器计划。这样,20年来被美海军炒得沸沸扬扬的MIRACL就此划上一个句号。

美海军放弃MIRACL计划的原因与国际大气候有关。冷战结束后,美海军作战重点从远洋转移到沿海区域,作战环境发生了巨大变化。为适应这种变化,美海军要求调整高能激光器计划。研究表明,在沿海环境中,热晕是大气吸收激光能量的主要因素,而且热晕与风速风向有关。

在沿海环境下,军舰航行速度较低,因此总的侧向风力是由当地气候条件决定的。这种侧风往往很小,以致于热晕效应远比在远洋环境下产生的热晕效应更为严重。

美海军认为,MIRACL高能激光器的3.8微米波长激光在沿海环境下热晕效应较严重,应该找到一种热晕效应较小的波长代替它。这就是美海军放弃MIRACL激光器的主要原因。

美海军放弃MIRACL计划后,立刻提出进一步研制舰载高能激光武器的新计划。这项新计划的重要一步是重新选定适合于在沿海环境下使用的最佳波长。

经过研究,美海军得出结论:在1~13微米红外波长范围内,只有1~2.5微米波长激光的大气传输性能优于MIRACL的3.8微米波长激光的大气传输性能。

为了进一步从1~2.5微米波长范围内选出适于沿海作战的最佳波长,美海军又对1.042微米、1.064微米(YAG激光器)、1.315微米(化学氧碘激光器)、1.6微米、2.2微米和3.8微米几种波长激光,在沿海条件下的大气吸收特性、消光特性和总的大气传输特性进行了计算比较,得出如下重要结果:

(1)关于吸收特性,1.05微米(包括1.042微米和1.064微米)的相对大气吸收率比1.6微米的低一个数量级,而1.6微米的相对大气吸收率又比2.2微米和3.8微米的低一个数量级。

(2)关于消光特性,1.6微米、2.2微米和3.8微米的相对消光率均比短波长的低。

(3)关于大气传输特性,1.6微米和1.04微米波长的相对海上传输系数远远优于1.315微米和3.8微米的传输系数。

综合上面三个因素考虑,认为1.6微米和1.05微米比较适合于在沿海环境下使用。但是,由于1.6微米处于人眼安全波长范围内并具有在不同大气条件下性能稳定等特点,因此最终倾向于选择1.6微米波长为适于沿海环境下的最佳波长。

就这样,因在近海迎头作战模式中现有的各种激光束可能会产生热晕效应,影响杀伤效果,1996年美国海军决定转向研制自由电子激光器,平均功率已达500瓦。

结构特点

虽然激光技术很复杂,其工作过程如下:在自由电子激光(FEL)系统中,一个粒子加速器将自由电子(那些不被原子缚束的,自由移动的电子)加速到高能级,接着电子束被送进一个磁场,在磁场的作用下电子上下跃迁,释放出光子。激光器发出的光不象电灯泡发出的光那样可散射,而是保持一条直线。

最新动态

1998年,杰斐逊实验室的研究者们展示了一种1千瓦的FEL,它能够产生2100瓦的红外激光。它运行了两年半,打破了所有“可调”高功率激光器的记录。

今年6月,研究人员用他们最新的激光器产生了激光。研究人员希望到今年夏末,它能够产生功率10倍于早期FEL的激光,即10千瓦的红外激光或1千瓦的紫外激光。

研究人员称,FEL可以产生无数极短的脉冲,其持续时间不到十亿分之一秒。这种脉冲可作用于分子界,因而可用于激励材料的研究和化学合成。

FEL在很多方面具有价值。作为一种研究工具,它可以帮助化学家们研究物质。这已经被30多家海军、航空航天局(NASA)、大学和工业研究机构在各种领域使用,包括寻找新的廉价的生产碳纳米管的方法,研究硅材料中的氢缺陷机制,以及发现蛋白质传输能量的方法。

另一方面,FEL技术经过进一步发展,可以为海军提供一件强大的武器。用于进攻,激光可以在敌方舰船和飞机上切开口子。用于防卫,它可以有很多用途。例如,海军和空军设想在敌人的远程导弹从发射井或发射架上升空时,利用激光武器将其摧毁。

但在一个更小的层面上,激光武器可以用来保护海军舰船,防止那些由恐怖分子或流氓国家的间谍驾驶的装着炸药的小船的袭击。激光武器最大的一个好处是它不是只发射一发炮弹,因而可能错过目标,相反,它可以在一段时间内连续开火,保证激光束瞄准目标并将其加热摧毁。

2002年时,经过数年的努力,美国海军在自由电子激光器(FEL)的武器化方面取得重大进展。据专门负责海军高能激光武器和高功率微波武器研究、发展、集成和采办的海军定向能武器项目主任称,如果得到充足的资金,海军将在未来2~3年内研制出10万瓦级舰载激光武器。

当前托马斯•杰夫逊国家实验室已经解决了自由电子激光器转化为舰载武器系统面临的许多技术问题,并且已研制成2千瓦级的自由电子激光器,正在按进度研制1万瓦级的激光器,预计将在未来2~3年研制成10万瓦级的激光器。10万瓦级的自由电子激光器研制成功后,将转移到海军的巴尔金沙太平洋导弹试验靶场进行测试。

美一研发小组正在使海军告别火炮时代,进而使用以光粒子作为炮弹的舰载激光武器。虽然大多数人将光看作是比空气更不实在的东西,但大功率的自由电子激光器(FEL)却可以用来为舰船提供防护,击毁敌方船只或导弹。这个研发小组的成员包括:海军研究办公室、托马斯杰斐逊国家加速器实验室的能量分部、空军研究实验室和联合防御技术办公室。

SDI与激光战

1983年3月23日,美国总统里根,在全国电视节目黄金时刻,向全国发表了永载史册的“美国国家安全”的电视讲话。其中心思想,就是要研制出用于国土防御的反弹道导弹武器系统,使敌方的核武器“无用和过时”,以保护美国及其盟国的国土安全。

这就是美国政府的“战略防御倡议”(Strategic Defense Initative),简称SDI。由于SDI所描绘的战场大都在太空和大气层中,将使用各种性能先进的武器系统、智能系统和运载工具,与电影《星球大战》中的景像极为相似,所以又被称之为“星球大战”计划。

里根的电视演说一发表,顿时引起了全球的震惊,一时间成为世界舆论的中心,特别是在美国国内,触发了一场几乎所有的政治家、科学家、军事家、经济学家都被卷入了的激烈辩论,结果是赞成者占了上风。

1983年4月18日,里根签署了第6号国家安全指令,要求国防部在当年10月底以前,完成SDI的功效评估和确定一项长期的研究发展计划,以便最后消除核威胁。以第6号国家安全指令为标志,SDI计划正式开始实施。

1984年1月6日,里根签署了第116号秘密指令,要求国防部立即开始执行研究激光和粒子束反导弹计划,并立即组建“战略防御局”(SDIO)。1987年,美国战略防御倡议局曾对SDI发展方案进行了适当的调整。原苏联解体后,由于美国国内政治、外交和经费方面的原因,SDI计划的实施有所放松。

海湾战争,证明了发展中国家也具有核攻击的能力,加之SDI计划的产品——“爱国者”导弹拦截“飞毛腿”导弹的辉煌战绩,再次激发了五角大楼建立“星球大战”导弹防御体系,以保护美国及其盟国不受有限导弹袭击的广泛热情。

1992年2月,美国国防部宣布重新调整战略防御计划——称为“全球防御有限打击计划”,即把防御对象从原苏联全面核攻击转向来自发展中国家的有限核攻击。但这种调整从技术角度上来讲,非但没有减少原来SDI计划的难度,反而在侦察、监视、跟踪和防御打击等方面对SDI提出了更高的要求。充其量只是在部署形式上有所改变,密度上有所降低而已。

无论SDI计划如何修改,但对弹道导弹的拦截原理都是一样的,即经反复论证后敲定的“三区四层防御部署”。其第一、二层为远程作战区,第三层为中程防御区,第四层为近程低空拦截区。

第一层为“助推段拦截层”,即对弹道导弹发射后初始助推阶段的拦截。主要采用的手段是:敌方导弹在发射后3~5分钟的爬升阶段,将放出大量的红外线。这时,通过早期预警卫星上红外传感器探测出来袭导弹的轨迹,立即向反导弹卫星发出指令。这种在地球同步轨道上运行的432颗装备有X射线激光武器的卫星,立即对来袭导弹进行识别。

当证实确系敌方导弹后,即以小型核爆炸为能源的激光器,迅速发射X射线激光击毁敌弹。据称,第一层防御极为重要:一是敌导弹尚未释放出多弹头,此时摧毁一枚,就相当于在后几个阶段摧毁数个弹头和数以百计的诱饵。二是敌导弹的助推火箭正在燃烧,高温火焰易被预警卫星或远程红外跟踪装置识别,易于命中。按计划每颗激光反导卫星可摧毁100枚以上正在上升的导弹,击毁率可达99%。

第二层称“末助推段拦截层”。当避开第一层防御网的导弹,在最末一级火箭发动机关机时,开始释放多弹头和诱饵。弹头和诱饵靠其惯性沿弹道曲线飞行穿出大气层而飞向目标,在这约为500秒的飞行中,用陆基或舰载激光武器或动能武器来摧毁这些漏网的弹头。按计划这一层防御网的命中率也可达90%。

第三层称“中段拦截层”。即前两层漏网的导弹弹头和突防装置,再入大气层前的这一段飞行时周,约10~15分钟。这时,弹头数量多,且有真有假,难以拦截。可使用电磁轨道炮,或由地面发射激光武器以及其他非核反导弹武器,采用碰撞杀伤等手段拦截这些漏网弹头。按要求,其命中率也在90%以上。

第四层即“末段拦截层”,是对重返大气层后的弹头加以拦截。此时可供拦截击中目标的时间只有最后几分钟。可用反导导弹、动能武器、激光武器、粒子束等武器摧毁所有漏网导弹,如海湾战争中大出风头的“爱国者”导弹即属此类。其命中率也在90%以上。

从以上方案可以看出,在整个拦截过程中,尤其是大气层外的三层拦截网,尽管后来又发展了一些新的束能武器,和诸如“智石”系统的动能武器等,但最终都离不开激光武器。

激光防空武器

激光防空武器被认为是激光束能武器水平的典型代表,因为它要求激光器的功率大,与之相适应的光学系统、电子系统、控制系统要求精密准确,反应敏捷。加之投资巨大,所以令人瞩目。

尽管防空激光武器系统研制费用高,技术难度大,但就其费效比来说还是高的。激光防空武器一旦投入使用,就只消耗燃料(电能、化学能等),不象防空导弹那样消耗硬件。

一枚“爱国者”防空导弹价值高达30~50万美元、一枚“毒刺”防空导弹为2万美元,而氟化氘化学激光防空武器每发射一次仅1~2千美元,这与一发炮弹的价格差不多。如果采用技术更为成熟的二氧化碳激光器,每发射一次的费用可降至几百美元。

如果与其所打击的目标来比较,那就更可观了。一架战斗机价值3~5千万美元,一架轰炸机价值8千万美元,而一些尖端飞机如空中预警飞机,隐型轰炸机等,价值均在亿元以上。

前苏军入侵阿富汗期间,美国曾用“毒刺”导弹供应阿富汗游击队,条件是每击落一架苏联飞机,可以再免费赠送两枚导弹。所以从整体上来讲,无论与攻击的目标相比,还是与使用的导弹相比,激光武器都是很合算的。

从试验情况来看,美国、苏联和前联邦德国在上述领域内的研究水平都比较高。

美国陆军于1976年,在亚拉巴马州的雷德斯兵工厂,使用LTVP-7型坦克载的100千瓦的激光防空炮,数秒钟内即击落两架有翼靶机和直升靶机。1977年夏,官方宣布,美国使用波长为3.8微米的高功率氟化氘高能量激光器,首次摧毁一个飞行中的导弹目标——奈克•赫尔克里士导弹。

1982年秋,用强激光又成功地摧毁了“陶”式地对地中程导弹。美国陆军当前正在实行一项化学激光武器计划,拟采用1.4兆瓦的氟化氘化学激光器,用于保护重要设施,初期将使用10万瓦的激光器件进行试验。

美国空军于1983年5月31日到7月25日,用波音707客机改装的NKC-135型飞机(即机载激光试验室)上安装的500千瓦功率的激光炮,在先后两个月的时间里,把从A-7海盗式战斗轰炸机向它发射的5枚AIM-98型“响尾蛇”空—空导弹击毁;同年12月,又击落了模拟巡航导弹飞行的靶机。

美国海军的舰载激光武器发展很快,可能与舰上适于安装大型激光器有关。1978年春,休斯公司为海军设计的带瞄准跟踪系统的40万瓦功率氟化氘的激光器,击毁了陆军发射的4枚“陶”式有线制导反坦克导弹,这种导弹飞行速度很快,比掠海飞行的巡航导弹或低空飞行的战斗机还难对付;1987年9月18日,又用同类型号的激光器,击落了一架模拟巡航导弹飞行的BQM-34S型“火蜂”靶机。

同年11月2日,在上次试验射程的两倍距离上,又成功地重复了一次相同的试验;1989年2月23日,又击落了一枚高速飞行的战术导弹。这标志着这种大功率的激光武器已能满足实战的要求。

前苏联奉行不声张、干实事的政策,大力发展国土防空、野战防空和舰船防空三种激光武器。据称,在列宁格勒波罗的海造船厂建造的第二艘“基洛夫”级巡洋舰上,建造了氟化氘化学激光系统,作用距离可达10公里。同时机载激光武器系统也在抓紧研制,以对付巡航导弹。

前联邦德国的MBB公司和迪尔公司,在国防部的资助下,正在研制一种车载防空激光武器。整个系统重约20吨,装到“豹Ⅱ”型坦克底盘上,由两人操纵。一个长约15米的升降臂,可将发射系统升至高处,以减少大气或战场烟尘的影响。激光器采用一氧化二氮/轻汽油气动二氧化碳激光器,平均功率高达1兆瓦。

所用轻质大型反射镜用碳纤维复合材料制造,直径约1米。尤其独到的是,为了克服大气对光束的影响,采用了19元的自适应光学系统,在其探测、跟踪与瞄准系统中,采用被动红外装置探测、捕获目标和进行粗跟踪。对目标的精密跟踪则是利用从目标返回的激光束,由高速计算机配合完成。即跟踪返回光束来修正可调节的反射镜,使激光束的焦点保持在目标上。同时,车上计算机系统还有敌我识别能力。

需要指出的是,激光武器所谓的功能只是相对的。如果防空激光武器平射的话就成了陆战兵器。而且所有防空激光武器的致盲能力都是非常强的,不言而喻,对具有能熔化金属能量的激光武器,当然也是一件纵火兵器了。

最短的光脉冲

自然界中存在着许多变化时间极短的过程(包括物理、化学和生物过程)。人们要研究这样的过程,探索其规律,就需要有相应的探针。

可是在激光问世以前,由于技术的限制,这种探针是无法找到的。只是到了80年代,激光技术的发展有了新的飞跃之后,这个问题才有了解决的可能,并且也已成为现实。当前利用腔内对碰锁模技术和腔外脉冲压缩技术,都能获得超短激光脉冲。利用后者,科学家已获得了6飞秒(10-15s)的光脉冲,创造了超短脉冲激光的新记录,这一成果对于开展瞬态过程的研究,提供了极其有用的工具。

化学激光器

化学激光器是另一类特殊的气体激光器,其泵浦源为化学反应所释放的能量。这类激光器大部分以分子跃迁方式工作,典型波长范围为近红外到中红外谱区。

最主要的有氟化氢和氟化氘两种装置。前者可以在2.6~3.3微米之间输出15条以上的谱线;后者则约有25条谱线处于3.5~4.2微米之间。这两种器件均可实现数兆瓦的输出。其他化学分子激光器包括波长为4.0~4.7微米的溴化氢激光器,波长4.9~5.8微米的一氧化碳激光器等。

化学激光器有脉冲和连续两种工作方式。脉冲装置首先于1965年发明,连续器件4年后出现。其中氟化氢和氟化氘激光器由于可以获得非常高的连续功率输出,其潜在军事应用很快引起人们的兴趣。

美国于20世纪80年代中期以3.8微米波长、2.2兆瓦功率的氟化氘激光器为基础,研制出“中红外先进化学激光装置”,称其为当时“自由世界能量最大的高能激光系统”。而氧碘激光器则在材料加工中得到应用,主要用于受控热核聚变反应。

化学激光器发展方向包括以数十兆瓦为目标,进一步增加连续器件的输出功率;努力提高氟化氢激光的光束质量和亮度;并探索由氟化氢激光器获得1.3微米左右短波长输出的可能性。

固体激光器

固体激光器是用固体激光材料作为工作物质的激光器。1960年,T.H.梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。固体激光器一般由激光工作物质、激励源、聚光腔、谐振腔反射镜和电源等部分构成。

这类激光器所采用的固体工作物质,是把具有能产生受激发射作用的金属离子掺入晶体而制成的。在固体中能产生受激发射作用的金属离子主要有三类:1、过渡金属离子;2、大多数镧系金属离子;3、锕系金属离子。这些掺杂到固体基质中的金属离子的主要特点是:具有比较宽的有效吸收光谱带,比较高的荧光效率,比较长的荧光寿命和比较窄的荧光谱线,因而易于产生粒子数反转和受激发射。

用作晶体类基质的人工晶体主要有:刚玉、钇铝石榴石、钨酸钙、氟化钙等,以及铝酸钇、铍酸镧等。用作玻璃类基质的主要是优质硅酸盐光学玻璃,例如常用的钡冕玻璃和钙冕玻璃。与晶体基质相比,玻璃基质的主要特点是制备方便和易于获得大尺寸优质材料。

对于晶体和玻璃基质的主要要求是:易于掺入起激活作用的发光金属离子;具有良好的光谱特性、光学透射率特性和高度的光学(折射率)均匀性;具有适于长期激光运转的物理和化学特性。晶体激光器以红宝石和掺钕钇铝石榴石为典型代表。玻璃激光器则是以钕玻璃激光器为典型代表。

激光致盲武器

激光致盲武器属于激光武器的一种。利用激光束照射人眼或武器装备中的光电传感器等元部件,使之受到干扰、失效、过载或造成某些损伤的一类激光武器。

这类武器可烧伤敌人的视网膜,使其暂时甚至永久失明;还可使观测仪器失效;光学跟踪制导系统失控;光学侦查卫星失效等,并可对人产生强烈的心理威胁和震慑。

是一种有效的光电对抗装备,能起到干扰、压制或阻碍敌方观测、跟踪或精确制导武器的进攻等作用。相对强激光武器能耗低、易于制造和使用,是比较成熟的战场适用的一种非致命性武器。

激光雷达

激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。从工作原理上讲,与微波雷达没有根本的区别:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。

激光雷达的特点

与普通微波雷达相比,激光雷达由于使用的是激光束,工作频率较微波高了许多,因此带来了很多特点,主要有:

分辨率高

激光雷达可以获得极高的角度、距离和速度分辨率。通常角分辨率不低于0.1mard也就是说可以分辨3千米距离上相距0.3米的两个目标,并可同时跟踪多个目标;距离分辨率可达0.1米;速度分辨率能达到10米/秒以内。距离和速度分辨率高,意味着可以利用距离——多谱勒成像技术来获得目标的清晰图像。分辨率高,是激光雷达的最显著的优点,其多数应用都是基于此。

隐蔽性好、抗有源干扰能力强

激光直线传播、方向性好、光束非常窄,只有在其传播路径上才能接收到,因此敌方截获非常困难,且激光雷达的发射系统(发射望远镜)口径很小,可接收区域窄,有意发射的激光干扰信号进入接收机的概率极低;另外,与微波雷达易受自然界广泛存在的电磁波影响的情况不同,自然界中能对激光雷达起干扰作用的信号源不多,因此激光雷达抗有源干扰的能力很强,适于工作在日益复杂和激烈的信息战环境中。

低空探测性能好

微波雷达由于存在各种地物回波的影响,低空存在有一定区域的盲区(无法探测的区域)。而对于激光雷达来说,只有被照射的目标才会产生反射,完全不存在地物回波的影响,因此可以“零高度”工作,低空探测性能较微波雷达强了许多。

体积小、质量轻

通常普通微波雷达的体积庞大,整套系统质量数以吨记,光天线口径就达几米甚至几十米。而激光雷达就要轻便、灵巧得多,发射望远镜的口径一般只有厘米级,整套系统的质量最小的只有几十公斤,架设、拆收都很简便。而且激光雷达的结构相对简单,维修方便,操纵容易,价格也较低。

激光雷达的缺点

首先,工作时受天气和大气影响大。激光一般在晴朗的天气里衰减较小,传播距离较远。而在大雨、浓烟、浓雾等坏天气里,衰减急剧加大,传播距离大受影响。如工作波长为10.6微米的co2激光,是所有激光中大气传输性能较好的,在坏天气的衰减是晴天的6倍。

地面或低空使用的co2激光雷达的作用距离,晴天为10—20千米,而坏天气则降至1千米以内。而且,大气环流还会使激光光束发生畸变、抖动,直接影响激光雷达的测量精度。

其次,由于激光雷达的波束极窄,在空间搜索目标非常困难,直接影响对非合作目标的截获概率和探测效率,只能在较小的范围内搜索、捕获目标,因而激光雷达较少单独直接应用于战场进行目标探测和搜索。

反卫星激光武器

反卫星激光武器是一种远程战略激光武器,可装备于地面部队,也可装备于战斗机、战斗卫星上,利用激光瞬间能量,摧毁太空中的军用卫星。

反卫星激光武器发射的激光束,辐射强度高,能在空间、时间上,将能量高度集中,具有杀伤破坏作用。它的主要杀伤作用是热效应,即利用高温烧毁或重创太空中的军用卫星。激光束也有一定的冲击效应,使卫星上的零部件损坏或者偏离轨道。

反卫星激光武器发射的激光束以光的速度行进,光弹要比炮弹、导弹的速度快得多,可以瞬间击中目标,不需要提前量,瞄到那里,打向那里。还由于反卫星激光武器发射的光弹质量为零,射击时没有反作用力,不会发生后座,可以安装在飞机、军舰或地面,进行精确地瞄准、射击。

1997年10月17日,美国用地面化学激光发射装置向美国要报废的军用气象卫星发射激光束,照射时间10秒,命中了目标。10月20日,美国国防部宣布用激光射击卫星获得成功,这表明反卫星激光武器成为军用卫星新杀手。

天基激光武器

概述

天基激光武器实际上是以激光武器为有效载荷的“杀手”卫星,可称为激光作战卫星,亦称天基激光平台。如果用以攻击地球目标,则天基激光武器具有覆盖地面范围大的优点。

如同其他卫星一样,激光作战卫星轨道越高,覆盖面就越大。地球静止轨道激光卫星可以覆盖42%的地球表面;若用近地轨道激光卫星来实现全球覆盖,卫星的数量要相应增加,但是近地轨道卫星离目标近,有利于提高激光武器的杀伤能力。

激光作战卫星由激光武器(激光器、光学系统、捕获跟踪与指向系统)和平台服务系统组成。激光器采用氟化氢激光器,工作波长2.7微米,发射功率估计为8兆瓦。光学系统的主反射镜直径8米,镜表面有超反射涂层,不需要主动冷却,即能保证激光器在巨大热负荷下正常工作。

捕获跟踪与指向系统由监视装置和稳定平台组成,能在激光器机械泵产生强烈振动的情况下,保证光束对准目标。平台服务系统包括电源、反应物、数据处理和测控等分系统。

性能指标

美国设计的未来太空激光武器:太空激光武器的激光介质能连续发光200~500秒;激光波长为2.7微米;激光功率为5~10兆瓦;轨道高度为800~1000公里;倾斜角为40度;一颗卫星的履盖面积为地球表面积的1/10;航程为4000~12000公里;发光直径为0.3~1米;最大射程为3000米;一次射击时间为10秒;平均瞄准时间为1秒;质量为3.5万千克;整个系统由20颗卫星和10个轨道镜组成。

发展演变

激光卫星各分系统的技术经过过去20~30年的开发,现都已基本掌握。为了建造实战用的激光武器系统,目前正在加紧执行两项任务:

一是研制、试验“天基激光武器演示器”。这是将所有分系统总装,形成完整的激光作战卫星,进行在轨演示试验,验证全系统工作的协调性和对太空环境的适应性。该演示器的尺寸按实战型卫星的1/2,激光器发射功率按实战型功率的1/3设计。该演示器的质量估计为16600千克,大约是实战型激光卫星质量的1/2。

二是解决全尺寸激光卫星的发射。美国的大力神-4火箭及其下一代的运载能力可达到22000千克。如果实战型激光卫星尺寸不能缩小,则需将卫星分2次发射,在太空组装,或者需要研制新的运载火箭。美国国防部不打算研制新的火箭,所以正在加强激光卫星小型化和卫星太空组装的研究。

激光作战卫星的研制成本,可根据美国军用卫星研制成本的历史统计数据进行估算:已知单价为5万美元/千克~15万美元/千克。由24颗卫星组成的天基激光武器星座总质量估计为840吨(2435000千克),若按平均单价10万美元/千克计,研制成本为840亿美元。?

研制实战型卫星,需在完成演示器太空试验的基础上,增加10%的技术延伸费;发射成本按改进型一次性运载火箭5650美元/千克计。于是,全部研制与发射成本总计970亿美元。

天基激光武器系统的下一步技术发展将集中在几个方面:

研制波长更短的激光器,以便缩小光学系统的尺寸。正在开发的有波长1.3微米的改进型氟化氢激光器、波长1.35微米的化学氧碘激光器、新型二极管激光器和波长0.8微米的多光束激光器。

增大主反射镜的直径,提高照射到目标的光束能量。反射镜尺寸越大,可使光束越集中,光强越高。若维持光强不变,则可以降低对激光器输出功率的要求,从而减轻卫星质量,降低研制成本。

进一步提高跟踪和指向精度,以弥补因光束抖动产生的模糊度,其效果相当于提高激光器输出功率或增大光学反射镜尺寸。

美国正在加紧天基激光武器到激光作战卫星的发展,已将其作为太空动能武器的备用与后继系统和国家导弹防御系统的组成部分。

太空激光武器还存在许多尚未解决的难题,包括:怎样把大型的激光装置送入轨道,主要原因就是发光装置主镜的直径过大,解决的主要办法是研制能在运载火箭的货舱内放得下的折叠式主镜,并且在太空激光武器进入预定轨道后能自动打开。

还有一个问题就是,怎样向轨道上的太空激光武器补充化学介质,在将来激光武器使用的都是化学激光,没有介质就不能发生化学反应,也就不能产生激光。美国科研局和美国空军,在太空激光武器的下一阶段的主要任务是集中精力攻克上述难题。