(3·9)

式(3·9)称道尔顿定律,它表明蒸发速度与饱和差(E-e)及分子扩散系数

  1. 成正比,而与气压(P)成反比。但在自然条件下,蒸发是发生于湍流大气之中的,影响蒸发速度的主要因素是湍流交换,并非分子扩散。考虑到自然蒸发的实际情况,影响蒸发速度的主要因子有四个:水源、热源、饱和差、风速与湍流扩散强度。
(一)水源

没有水源就不可能有蒸发,因此开旷水域、雪面、冰面或潮湿土壤、植被是蒸发产生的基本条件。在沙漠中,几乎没有蒸发。

(二)热源

蒸发必须消耗热量,在蒸发过程中如果没有热量供给,蒸发面就会逐渐冷却,从而使蒸发面上的水汽压降低,于是蒸发减缓或逐渐停止。因此蒸发速度在很大程度上决定于热量的供给。实际上常以蒸发耗热多少直接表示某地的蒸发速度。以上海为例,如图 3·4 所示,上海夏季和秋季蒸发耗热比较多,亦即蒸发速度比较大。这是因为夏季和秋季上海地区土壤和水的温度比较高,因而有足够的热源供给蒸发。

(3·9) - 图1

(三)饱和差(E-e)

蒸发速度与饱和差成正比。严格说,此处的 E 应由蒸发面的温度算出, 但通常以一定气温下的饱和水汽压代替。饱和差愈大,蒸发速度也愈快。

(四)风速与湍流扩散

大气中的水汽垂直输送和水平扩散能加快蒸发速度。无风时,蒸发面上的水汽单靠分子扩散,水汽压减小得慢,饱和差小,因而蒸发缓慢。有风时, 湍流加强,蒸发面上的水汽随风和湍流迅速散布到广大的空间,蒸发面上水汽压减小,饱和差增大,蒸发加快。

除上述基本因子外,大陆上的蒸发还应考虑到土壤的结构、湿度、植被的特性等。海洋上的蒸发还应考虑水中的盐分。

在影响蒸发的因子中,蒸发面的温度通常是起决定作用的因子。由于蒸发面(陆面及水面)的温度有年、日变化,所以蒸发速度也有年、日变化。

四、湿度随时间的变化

影响蒸发的诸多因子随时间均有强弱变化,因而近地层大气的湿度也表现出明显的日、年变化的规律,由绝对湿度和相对湿度两种方法表示的大气湿度随时间具有不同的变化规律。

水汽压是大气中水汽绝对含量的表示方法之一,它的日变化有两种类型。一种是双峰型:主要在大陆上湍流混合较强的夏季出现。水汽压在一日内有两个最高值和两个最低值。最低值出现在清晨温度最低时和午后湍流最强时,最高值出现在 9—10 时和 21—22 时(图 3·5 中实线)。峰值的出现是因为蒸发增加水汽的作用大于湍流扩散对水汽的减少作用所致。另一种是单波型,以海洋上、沿海地区和陆地上湍流不强的秋冬季节为多见。水汽压与温度的日变化一致,最高值出现在午后温度最高、蒸发最强的时刻,最低值出现在温度最低、蒸发最弱的清晨(图 3·5 中虚线所示)。

(3·9) - 图2水汽压的年变化与温度的年变化相似,有一最高值和一最低值。最高值出现在温度高、蒸发强的 7—8 月份,最低值出现在温度低、蒸发弱的 1—2 月份。

相对湿度的日变化主要决定于气温。气温增高时,虽然蒸发加快,水汽压增大,但饱和水汽压增大得更多,反使相对湿度减小。温度降低时则相反, 相对湿度增大。因此,相对湿度的日变化与温度日变化相反,其最高值基本上出现在清晨温度最低时,最低值出现在午后温度最高时(图 3·6)。

相对湿度的年变化一般以冬季最大,夏季最小。某些季风盛行地区,由于夏季盛行风来自于海洋,冬季盛行风来自于内陆,相对湿度反而夏季大, 冬季小。

湿度这种有规律的年、日变化的特征有时会因天气变化等因素而遭破坏,其中起主要作用的是湿度平流。由于各地空气中水汽含量不一样,当空气从湿区流到干区时(称为湿平流),引起所经地区湿度的增加。当空气从

干区流到湿区时(称为干平流),引起所经之处的湿度减小。

五、大气中水汽凝结的条件

水汽由气态变为液态的过程称为凝结。水汽直接转变为固态的过程称凝华。大气中水汽凝结或凝华的一般条件是:一是有凝结核或凝华核的存在。二是大气中水汽要达到饱和或过饱和状态。

(一)凝结核

在大气中,水汽压只要达到或超过饱和,水汽就会发生凝结,但在实验室里却发现,在纯净的空气中,水汽过饱和到相对湿度为 300%—400%,也不会发生凝结。这是因为作不规则运动的水汽分子之间引力很小,通过相互之间的碰撞不易相互结合为液态或固态水。只有在巨大的过饱和条件下,纯净的空气才能凝结。然而巨大的过饱和在自然界是不存在的。大气中存在着大量的吸湿性微粒物质,它们比水汽分子大得多,对水分子吸引力也大,从而有利于水汽分子在其表面上的集聚,使其成为水汽凝结核心。这种大气中能促使水汽凝结的微粒,叫凝结核,其半径一般为 10-7-10-3cm,而且半径越大,吸湿性越好的核周围越易产生凝结。凝结核的存在是大气产生凝结的重要条件之一。

(二)空气中水汽的饱和或过饱和

大气中,凝结核总是存在的。能否产生凝结,取决于空气是否达到过饱和。使空气达到过饱和的途径有两种:一是通过蒸发,增加空气中的水汽, 使水汽压大于饱和水汽压。二是通过冷却作用,减少饱和水汽压,使其少于当时的实际水汽压。当然也可是二者的共同作用。因此促使水汽达到过饱和状态的过程有:

  1. 暖水面蒸发

通常情况下,水面蒸发作用虽然可以增大空气湿度,但并不能使空气中的水汽产生凝结。因为靠近水面的空气接近饱和时,蒸发即基本停止。然而, 当冷空气流经暖水面时,由于水面温度比气温高,暖水面上的饱和水汽压比空气的饱和水汽压大得多,通过蒸发可使空气达到过饱和,并产生凝结。秋冬季的早晨,水面上腾起的蒸发雾就是这样形成的。

  1. 空气的冷却

减小饱和水汽压主要靠空气冷却。大气的冷却方式主要有如下三种:

  1. 绝热冷却:指空气在上升过程中,因体积膨胀对外做功而导致空气本身的冷却。随着高度升高,温度降低,饱和水汽压减小,空气至一定高度就会出现过饱和状态。这一方式对于云的形成具有重要作用。

  2. 辐射冷却:指在晴朗无风的夜间,由于地面的辐射冷却,导致近地面层空气的降温。当空气中温度降低到露点温度以下时,水汽压就会超过饱和水汽压产生凝结。辐射雾就是水汽以这种方式凝结形成的。

  3. 平流冷却:暖湿空气流经冷的下垫面时,将热量传递给冷的地表, 造成空气本身温度降低。如果暖空气与冷地面温度相差较大,暖空气降温较多,也可能产生凝结。

(3·9) - 图3

  1. 混合冷却:当温差较大,且接近饱和的两团空气水平混合后,也可能产生凝结。由于饱和水汽压随温度的改变呈指数曲线形式(如图 3·7 中的曲线),就可能使混合后气团的平均水汽压比混合气团平均温度下的饱和水汽压大。图中 A 和 B 分别代表两个未饱和气团的状态,A 气团的温度为 t1, 水汽压为 e1,饱和水汽压为 E1。B 气团的温度为 t2,水汽压为 e2,饱和水汽压为 E2。混合后,空气的温度即为原来两团空气的平均温度(即横坐标上 t1 与 t2 之中点),对应的饱和水汽压为 E。由于混合是水平方向进行的。混合后的水汽压 e,即为 e1 与 e2 的平均值(即纵坐标上 e1 与 e2 之中点)。从图上可以看出这两团空气混合后,水汽压大于饱和水汽压,即 e>E,可以产生凝结。例如我国新疆地区就有因不同气团混合而产生的雾。若两气团原来的湿度比较小,则混合后也难以发生凝结。

在上述几种过程中,冷却通常是主要的。对形成雾来说,由于凝结出现

在贴近地面的气层中,因此辐射冷却、平流冷却是主要的;对形成云来说, 由于凝结是在一定高度上,因而绝热冷却就成为主要的了。

第二节 地表面和大气中的凝结现象

水汽的凝结既可产生于空气中,也可产生于地表或地物上。前者有云和雾,后者有露、霜、雾凇和雨凇等。

一、地面的水汽凝结物

(一)露和霜

傍晚或夜间,地面或地物由于辐射冷却,使贴近地表面的空气层也随之降温,当其温度降到露点以下,即空气中水汽含量过饱和时,在地面或地物的表面就会有水汽的凝结。如果此时的露点温度在 0℃以上,在地面或地物上就出现微小的水滴,称为露。如果露点温度在 0℃以下,则水汽直接在地面或地物上凝华成白色的冰晶,称为霜。有时已生成的露,由于温度降至 0

℃以下,冻结成冰珠,称为冻露,实际上也归入霜的一类。

形成露和霜的气象条件是晴朗微风的夜晚。夜间晴朗有利于地面或地物迅速辐射冷却。微风可使辐射冷却在较厚的气层中充分进行,而且可使贴地空气得到更换,保证有足够多的水汽供应凝结。无风时可供凝结的水汽不多, 风速过大时由于湍流太强,使贴地空气与上层较暖的空气发生强烈混合,导致贴地空气降温缓慢,均不利于露和霜的生成。对于霜,除辐射冷却形成外, 在冷平流以后或洼地上聚集冷空气时,都有利于其形成。这种霜称为平流霜或洼地霜,它们又常因辐射冷却而加强。因此在洼地与山谷中,产生霜的频率较大。在水边平地和森林地带,产生霜的频率较小。

露的降水量很少。在温带地区夜间露的降水量约相当于 0.1—0.3mm 的降水层,但在许多热带地区却很可观,多露之夜可有相当于 3mm 的降水量,平均约 1mm 左右。露的量虽有限,但对植物很有利,尤其在干燥地区和干热天气,夜间的露常有维持植物生命的功用。例如,在埃及和阿拉伯沙漠中,虽数月无雨,植物还可以依赖露水生长发育。

霜和霜冻是有区别的。霜是指白色固体凝结物,霜冻是指在农作物生长季节里,地面和植物表面温度下降到足以引起农作物遭受伤害或者死亡的低温。有霜时农作物不一定遭受霜冻之害。有霜冻时可以有霜出现(白霜), 也可以没有霜出现(黑霜)。因此,我们要预防的是霜冻而不是霜。霜冻, 尤其是早霜冻(或初霜冻)和晚霜冻(或终霜冻)对农作物威胁较大,应引起重视,并需采取熏烟、浇水、覆盖等预防措施。

(二)雾凇和雨凇

雾凇是形成于树枝上、电线上或其它地物迎风面上的白色疏松的微小冰晶或冰粒。根据其形成条件和结构可分为两类:

  1. 晶状雾凇

晶状雾凇主要由过冷却雾滴蒸发后,再由水汽凝华而成。它往往在有雾、微风或静稳以及温度低于-15℃时出现。由于冰面饱和水汽压比水面小,因而过冷却雾滴就不断蒸发变为水汽,凝华在物体表面的冰晶上,使冰晶不断增长。这种由物体表面冰晶吸附过冷却雾滴蒸发出来的水汽而形成的雾凇叫晶状雾凇。它的晶体与霜类似,结构松散,稍有震动就会脱落。在严寒天气, 有时在无雾情况下,过饱和水汽也可直接在物体表面凝华成晶状雾凇,但增

长较慢。

  1. 粒状雾凇

粒状雾凇往往在风速较大,气温在-2—-7℃时出现。它是由过冷却的雾滴被风吹过,碰到冷的物体表面迅速冻结而成的。由于冻结速度很快,因而雾滴仍保持原来的形状,所以呈粒状。它的结构紧密,能使电线、树枝折断, 对交通运输、通讯、输电线路等有一定影响。

雨凇是形成在地面或地物迎风面上的透明的或毛玻璃状的紧密冰层。它主要是过冷却雨滴降到温度低于 0℃的地面或地物上冻结而成的。如果它是由非过冷却雨滴降到冷却得很厉害的地面或地物上而形成的时候,一般这种雨凇很薄而且存在的时间不长。

雨凇的破坏性很大,它能压断电线、折损树木,对交通运输、电讯、输电以及农业生产都有很大影响。例如山东临沂一次雨凇曾使一根 1m 长的电话线上冻结重达 3.5kg 的冰层,造成损失。在高纬度地区,雨凇是常出现的灾害性天气现象。

二、近地面层空气中的凝结

雾是悬浮于近地面空气中的大量水滴或冰晶,使水平能见度小于 1km 的物理现象。如果能见度在 1—10km 范围内,则称为轻雾。

形成雾的基本条件是近地面空气中水汽充沛,有使水汽发生凝结的冷却过程和凝结核的存在。贴地气层中的水汽压大于其饱和水汽压时,水汽即凝结或凝华成雾。如气层中富有活跃的凝结核,雾可在相对湿度小于 100%时形成。此外,因为冰面的饱和水汽压小于水面,在相对湿度未达 100%的严寒天气里可出现冰晶雾。

根据雾形成的天气条件,可将雾分为气团雾及锋面雾二大类。气团雾是在气团内形成的,锋面雾是锋面活动的产物。根据气团雾的形成条件,又可将它分为冷却雾、蒸发雾及混合雾三种。根据冷却过程的不同,冷却雾又可分为辐射雾、平流雾及上坡雾等。其中最常见的是辐射雾和平流雾。

(一)辐射雾

辐射雾是由地面辐射冷却使贴地气层变冷而形成的。有利于形成辐射雾的条件是:①空气中有充足的水汽;②天气晴朗少云;③风力微弱(1—3m/s);

④大气层结稳定。

辐射雾的厚度随空气的冷却程度及风力而定。如只在贴近地面的气层内,温度降到露点以下,而且风力微弱,则形成低雾。低雾的高度在 2—100m 之间,有时低雾厚度不到 2m,薄薄地蒙蔽在地面上,这种雾称为浅雾。低雾的形成常与近地层的逆温层有关,它的上界常与逆温层的上界一致。低辐射雾常在秋天的黄昏、夜晚或早晨日出之前出现在低洼地区。在日出前后,浓度达最大。上午 8—10 时,由于逆温层被破坏,低雾即随之消失。如空气冷却作用所及高度增大,辐射雾能伸展到几百米高。这种辐射雾称高雾,范围很广,能持续多日不散,仅在白天稍有减弱。辐射雾多出现在高气压区的晴夜,它的出现常表示晴天。例如,冬半年我国大陆上多为高压控制,夜又较长,特别有利于辐射雾的形成。

辐射雾有明显的地方性。我国四川盆地是有名的辐射雾区,其中重庆冬

季无云的夜晚或早晨,雾日几乎占 80%,有时还可终日不散,甚至连续几天。城市及其附近,烟粒、尘埃多,凝结核充沛,因此特别容易形成浓雾(常

称都市雾)。如果机场位于城市的下风方,这种雾就会笼罩机场,严重地影响飞机的起飞和着陆。

(二)平流雾

平流雾是暖湿空气流经冷的下垫面而逐渐冷却形成的。海洋上暖而湿的空气流到冷的大陆上或者冷的海洋面上,都可以形成平流雾。

形成平流雾的有利天气条件是:①下垫面与暖湿空气的温差较大;②暖湿空气的湿度大;③适宜的风向(由暖向冷)和风速(2—7m/s);④层结较稳定。

因为只有暖湿空气与其流经的下垫面之间存在较大温差时,近地面气层才能迅速冷却形成平流逆温,而这种逆温起到限制垂直混合和聚集水汽的作用,使整个逆温层中形成雾。适宜的风向和风速,不但能源源不断地送来暖湿空气,而且能发展一定强度的湍流,使雾达到一定的厚度。

平流雾的范围和厚度一般比辐射雾大,在海洋上四季皆可出现。由于它的生消主要取决于有无暖湿空气的平流,因此只要有暖湿空气不断流来,雾可以持久不消,而且范围很广。海雾是平流雾中很重要的一种,有时可持续很长时间。在我国沿海,以春夏为多雾季节,这是因为平流性质的海雾,只当夏季风盛行时才能到达陆上。

在陆上,由于平流冷却和辐射冷却的共同作用而形成平流辐射雾。此外, 还有冷气流流经暖水面时产生的蒸发雾,稳定的空气沿高地或山坡上升时因绝热冷却而形成的上坡雾,以及冷暖性质不同的气团交界处形成的锋面雾等。

三、云

云是降水的基础,是地球上水分循环的中间环节,并且云的发生发展总伴随着能量的交换。云的形状千变万化,一定的云状常伴随着一定的天气出现,因而云对于天气变化具有一定的指示意义。

(一)云的形成条件和分类

大气中,凝结的重要条件是,要有凝结核的存在,及空气达到过饱和。对于云的形成来说,其过饱和主要是由空气垂直上升所进行的绝热冷却引起的。上升运动的形式和规模不同,形成的云的状态、高度、厚度也不同。大气的上升运动主要有如下四种方式:

  1. 热力对流

指地表受热不均和大气层结不稳定引起的对流上升运动。由对流运动所形成的云多属积状云。

  1. 动力抬升

指暖湿气流受锋面、辐合气流的作用所引起的大范围上升运动。这种运动形成的云主要是层状云。

  1. 大气波动

指大气流经不平的地面或在逆温层以下所产生的波状运动。由大气波动

产生的云主要属于波状云。4.地形抬升

指大气运行中遇地形阻挡,被迫抬升而产生的上升运动。这种运动形成的云既有积状云,有波状云和层状云,通常称之为地形云。

尽管云的形态千差万别,但其形成总有一定的规律。根据云的形成高度并结合其形态,国分类法将云分为 4 族 10 属。我国于 1972 年出版的《中国云图》将云分成 3 族 11 属(表 3·3,详见《气学与气候学实习》①第五章)。

表 3 · 3 云的分类

云型

低(<2000m )

中( 2000-6000m )

高(>6000m )

层状云

雨层云( Ns )

高层云( As )

卷层云( Cs )卷云( Ci )

波状云

层积云( Sc )

层云( St )

高积云( Ac )

卷积云( Cc )

积状云

淡积云( Cuhum )

浓积云( CuCong ) 积雨云( Cb )

(二)各种云的形成
  1. 积状云的形成

积状云是垂直发展的云块,主要包括淡积云、浓积云和积雨云。积状云多形成于夏季午后,具孤立分散、云底平坦和顶部凸起的外貌形态。

积状云的形成总是与不稳定大气中的对流上升运动相联系。有对流能否形成积云,除了取决于凝结的条件外,还取决于对流上升所能达到的高度。如果对流上升所能达到的最大高度(对流上限)高于凝结高度,则积状云形成,否则就不会形成积状云。对流愈强,对流上限高于凝结高度的差值就愈大,积状云厚度就愈大。对流上升区的水平范围广大,则积状云的水平范围也就愈大。

淡积云、浓积云和积雨云是积状云发展的不同阶段。气团内部热力对流所产生的积状云最为典型。夏半年,地面受到太阳强烈辐射,地温很高,进一步加热了近地面气层。由于地表的不均一性,有的地方空气加热得厉害些, 有的地方空气湿一些,因而贴地气层中就生成了大大小小与周围温度、湿度及密度稍有不同的气块(热泡)。这些气块内部温度较高,受周围空气的浮力作用而随风飘浮,不断生消。较大的气块上升的高度较大,当到达凝结高度以上,就形成了对流单体,再逐步发展,就形成孤立、分散、底部平坦、顶部凸起的淡积云。由于空气运动是连续的,相互补偿的,上升部分的空气因冷却,水汽凝结成云,而云体周围有空气下沉补充,下沉空气绝热增温快, 不会形成云。所以积状云是分散的,云块间露出蓝天。对于一定的地区,在同一时间里,空气温、湿度的水平分布近于一致,其凝结高度基本相同,因而积云底部平坦。

① 周淑贞主编.气象学与气候学实习.北京:高等教育出版社,1989

如果对流上限稍高于凝结高度,则一般只形成淡积云(图 3·8a)。由于云顶一般在 0℃等温线高度以下,所以云体由水滴组成,云内上升气流的速度不大,一般不超过 5m/s,云中湍流也较弱。在淡积云出现的高度上,如果有强风和较强的湍流时,淡积云的云体会变得破碎,这种云叫碎积云。

当对流上限超过凝结高度许多时,云体高大,顶部呈花椰菜状,形成浓积云。其云顶伸展至低于 0℃的高度,顶部由过冷却水滴组成,云中上升气流强,可达 15—20m/s,云中湍流也强。

(3·9) - 图4

如果上升气流更强,浓积云云顶即可更向上伸展,云顶可伸展至-15℃以下的高空。于是云顶冻结为冰晶,出现丝缕结构,形成积雨云(图 3·8c)。积雨云顶部,在高空风的吹拂下,向水平方向展开成砧状,称为砧状云。在顺高空风的方向上,云砧能伸展很远,因而它的伸展方向,可作为判定积雨云的移动方向。积雨云的厚度很大,在中纬度地区为 5 000—8 000m,在低纬度地区可达 10000m 以上。云中上升下沉气流的速度都很大,上升气流常可达 20—30m/s,曾观测到 60m/s 的上升速度,下沉速度也有 10—15m/s。云中湍流十分强烈。

热力对流形成的积状云具有明显的日变化。通常,上午多为淡积云。随着对流的增强,逐渐发展为浓积云。下午对流最旺盛,往往可发展为积雨云。傍晚对流减弱,积雨云逐渐消散,有时可以演变为伪卷云、积云性高积云和积云性层积云。如果到了下午,天空还只是淡积云,这表明空气比较稳定, 积云不能再发展长大,天气较好,所以淡积云又叫晴天积云,是连续晴天的预兆。夏天,如果早上很早就出现了浓积云,则表示空气已很不稳定,就可能发展为积雨云。因此,早上有浓积云是有雷雨的预兆。傍晚层积云是积状云消散后演变成的,说明空气层结稳定,一到夜间云就散去,这是连晴的预兆。由此可知,利用热力对流形成的积云的日变化特点,有助于直接判断短期天气的变化。

  1. 层状云的形成

层状云是均匀幕状的云层,常具有较大的水平范围,其中包括卷层云、卷云、高层云及雨层云。

层状云是由于空气大规模的系统性上升运动而产生的,主要是锋面上的上升运动引起的。这种系统性的上升运动,通常水平范围大,上升速度只有0.1—1m/s,因持续时间长,能使空气上升好几千米。例如当暖空气向冷空气一侧移动时,由于二者密度不同,稳定的暖湿空气沿冷空气斜坡缓慢滑升, 绝热冷却,形成层状云(图 3·9)。云的底部同冷暖空气交绥的倾斜面(又称锋面)大体吻合,云顶近似水平。在倾斜面的不同部位,云厚的差别很大。最前面的是卷云和卷层云,其厚度最薄,一般为几百米至 2000m,云体由冰晶组成。位于中部的是高层云,其厚度一般为 1000—3000m,顶部多为冰晶组成,主体部分多为冰晶与过冷却水滴共同组成。最后面是雨层云,其厚度

一般为 3000—6000m,其顶部为冰晶组成,中部为过冷却水滴与冰晶共同组成,底部由于温度高于 0℃,故为水滴组成。

(3·9) - 图5

从上述的系统性层状云形成中可以看到,在降水来临之前,有些云可以作为征兆。如卷层云,通常出现在层状云系的前部,其出现还往往伴随着日、月晕,因此如看到天空有晕,便知道有卷层云移来,则未来将有雨层云移来, 天气可能转雨。农谚“日晕三更雨,月晕午时风”就是指此征兆。

  1. 波状云的形成

波状云是波浪起伏的云层,包括卷积云、高积云、层积云。云中的上升速度可达每秒几十厘米,仅次于积状云中的上升速度。

当空气存在波动时,波峰处空气上升,波谷处空气下沉。

空气上升处由于绝热冷却而形成云,空气下沉处则无云形成。如果在波动形成之前该处已有厚度均匀的层状云存在,则在波峰处云加厚,波谷处云减薄以至消失(图 3·10),从而形成厚度不大、保持一定间距的平行云条, 呈一列列或一行行的波状云。

(3·9) - 图6

一般认为形成波动的原因主要有二:一是由于大气中存在着空气密度和气流速度不同的界面,在此界面上引起波动。二是由于气流越山而形成的波动(称地形波或背风波)。在上层风速大、密度小,下层风速小、密度大的界面上产生波动时,由于各高度上的风向、风速常随时间变化,波动的方向也随之改变,新产生的波动叠加在原来的波动之上,从而形成棋盘格子般的云块。波动气层甚高时形成卷积云,较高时形成高积云,低时形成层积云。波状云的厚度不大,一般为几十米到几百米,有时可达 1000—2000m。

在它出现时,常表明气层比较稳定,天气少变化。谚语“瓦块云,晒死人”、“天上鲤鱼斑,明天晒谷不用翻”,就是指透光高积云或透光层积云出现后, 天气晴好而少变。但是系统性波状云,像卷积云是在卷云或卷层云上产生波动后演变成的,所以它和大片层状云连在一起,表示将有风雨来临。“鱼鳞天,不雨也风颠”就是指此种预兆。

  1. 特殊云状的形成

除上述几种云的形成外,还有一些特殊云状,如堡状、絮状、悬球状、荚状等,它们的出现往往能预测天气的变化趋势。因此,了解它们的成因和特征,有助于利用它们判断未来天气。

  1. 悬球状云:是指从云底下垂的云团,多出现在积雨云的底部。有时在高积云、高层云和雨层云的底部也可以见到。

当云中有大量的水滴时,如果云底附近有强烈的上升气流,将下降的水

滴托住,便会形成好像悬挂在云底的云团,这就是悬球状云。

悬球状云的出现,通常预兆有降水产生,因为一旦上升气流减弱,原先被托住的水滴就会降落下来,形成降水。

  1. 堡状云和絮状云:堡状云底部水平,顶部则是并列着突起的小云塔,形状像远方的城堡。这种云的形成,常常是在波状云的基础上发展起来的。当波状云在逆温层下形成以后,如果逆温层不太厚,则逆温层下湍流发展时,较强的上升气流就穿过逆温层,使水汽凝结,形成具有圆弧顶部的云朵, 这就是堡状云(图 3·11)。常见的堡状云有堡状高积云和堡状层积云。

(3·9) - 图7

絮状云的个体破碎,形状像棉絮团,它常是潮湿气层中的强烈湍流混合作用而形成的,主要为絮状高积云。

夏半年如早晨出现堡状高积云或絮状高积云,表示该高度上气层不稳定,到了中午,低层对流一发展,上下不稳定气层结合起来,会产生强烈上升气流,形成积雨云,下雷暴雨或冰雹。傍晚对流减弱,如出现堡状高积云, 表明高空将有不稳定系统逼近,次日可能出现系统性雷暴雨。

  1. 荚状云:荚状云中间厚、边缘薄,云块呈豆荚状。常见的荚状云主要是荚状高积云和荚状层积云。

荚状云是由局部上升气流和下降气流相汇合而形成的。当上升气流使空气绝热冷却而形成云时,如果遇到下降气流的阻挡,其边缘部分因下降气流而逐渐变薄,这样便形成荚状云。在山区,气流受到地形的影响也能形成荚状云(图 3·12)。

(3·9) - 图8

上面介绍了积状云、层状云、波状云和一些特殊云状形成的物理过程。但它们并不是孤立的不变的。由于条件的变化,它们可以是发展的或消散的, 也可以从这种云转化为那种云。例如积状云中,淡积云可以发展到浓积云, 最后形成积雨云。积雨云在消散时,可以演变成伪卷云、积云性高积云和积云性层积云。又例如,波状云发展时,可以演变成层状云(蔽光高积云可以演变成为高层云,蔽光层积云可以演变成为雨层云)。层状云消散时,也会演变成为波状云(雨层云消散时,可演变为高层云、高积云或层积云)。总之,云的产生、发展和演变是复杂的,也是有规律的。

第三节 降水

从云中降到地面上的液态或固态水,称为降水。

降水虽然主要来自云中,但有云不一定都有降水。这是因为云滴的体积很小(通常把半径小于 100μm 的水滴称为云滴,半径大于 100μm 的水滴称雨滴。标准云滴半径为 10μm,标准雨滴半径为 1000μm,从体积来说,半径1mm 的雨滴约相当于 100 万个半径为 10μm 的云滴),不能克服空气阻力和上升气流的顶托。只有当云滴增长到能克服空气阻力和上升气流的顶托,并且在降落至地面的过程中不致被蒸发掉时,降水才形成。

由于云的温度、气流分布等状况的差异,降水具有不同的形态——雨、雪、霰、雹。

雨:自云体中降落至地面的液体水滴。

雪:从混合云中降落到地面的雪花形态的固体水。

霰:从云中降落至地面的不透明的球状晶体,由过冷却水滴在冰晶周围冻结而成,直径 2—5mm。

雹:是由透明和不透明的冰层相间组成的固体降水,呈球形,常降自积雨云。

同时,降水的性质也有差异,分为连续性和阵性降水。连续性降水历时长,强度具有变化性,降水主要来自高层云和雨层云。阵性降水历时短,强度大,具有突然性,降水来自浓积云和积雨云。

不同的云降水强度不同,划分标准见表 3·4。

表 3 · 4 降水强度划分标准

雨( mm/d

小雨

< 10

中雨10 — 25

大雨25 — 50

暴 雨 50 — 100

大暴雨100 — 200

特大暴雨

> 2000

雪( mm/d

小雪

< 2.5

中雪

2.5 — 5.0

大雪

> 5.0

一、云滴增长的物理过程

降水的形成就是云滴增大为雨滴、雪花或其它降水物,并降至地面的过程。一块云能否降水,则意味着在一定时间内(例如 1h)能否使约 106 个云滴转变成一个雨滴。使云滴增大的过程主要有二:一为云滴凝结(或凝华) 增长。一为云滴相互冲并增长。实际上,云滴的增长是这两种过程同时作用的结果。

(一)云滴凝结(或凝华)增长

凝结(或凝华)增长过程是指云滴依靠水汽分子在其表面上凝聚而增长的过程。在云的形成和发展阶段,由于云体继续上升,绝热冷却,或云外不断有水汽输入云中,使云内空气中的水汽压大于云滴的饱和水汽压,因此云滴能够由水汽凝结(或凝华)而增长。但是,一旦云滴表面产生凝结(或凝华),水汽从空气中析出,空气湿度减小,云滴周围便不能维持过饱和状态,

而使凝结(或凝华)停止。因此,一般情况下,云滴的凝结(或凝华)增长有一定的限度。而要使这种凝结(或凝华)增长不断地进行,还必须有水汽的扩散转移过程,即当云层内部存在着冰水云滴共存、冷暖云滴共存或大小云滴共存的任一种条件时,产生水汽从一种云滴转化至另一种云滴上的扩散转移过程。例如,在冰晶和过冷却水滴共存的混合云中,在温度相同的条件下,由于冰面饱和水汽压小于水面饱和水汽压,当空气中的现有水汽压介于两者之间时,过冷却水滴就会蒸发,水汽就转移凝华到冰晶上去、使冰晶不断增大,而过冷却水滴则不断减小。当冷暖云滴共存或大小云滴共存时,同样也可发生这种现象,使冷(或大)的云滴不断增大。

上述几种条件中,对形成大云滴来说,冰水云滴共存的作用更为重要。这是因为在相同的温度下,冰水之间的饱和水汽压差异很大,特别是当温度在-10—-12℃时差别最显著,最有利于大云滴的增大。因此,对于冷云(指云体上部已超越等 0℃线,有冰晶和过冷却水滴共同构成的混合云)降水, 这种冰水云滴共存作用(称为冰晶效应)是主要的。观测事实也证明了这一点。著名的贝吉龙(Bergeron)理论的价值,就在于他强调了冰晶对降水的作用。但是,不论是凝结增长过程,还是凝华增长过程,都很难使云滴迅速增长到雨滴的尺度,而且它们的作用都将随云滴的增大而减弱。可见要使云滴增长成为雨滴,势必还要有另外的过程,这就是冲并增长过程。

(二)云滴的冲并增长

云滴经常处于运动之中,这就可能使它们发生冲并。大小云滴之间发生冲并而合并增大的过程,称为冲并增长过程。

表 3 · 5 静止空气中单个水滴的下降末速度( P=1013hPa , T=293K )

水滴半径( mm )

0.02

0.05

0.1

0.2

0.5

1.0

2.0

2.5

3.0

下降末速度*( cm/s )

5

27

72

162

403

649

883

909

918

*末速度系指在云滴下降过程中,如重力和所受的空气阻力达到平衡,使云滴作等速下降时的下降速度。

云内的云滴大小不一,相应地具有不同的运动速度。大云滴下降速度比小云滴快(表 3·5),因而大云滴在下降过程中很快追上小云滴,大小云滴相互碰撞而粘附起来,成为较大的云滴。在有上升气流时,当大小云滴被上升气流向上带时,小云滴也会追上大云滴并与之合并,成为更大的云滴。云滴增大以后,它的横截面积变大,在下降过程中又可合并更多的水云滴。有时在有上升气流的云中,当大小水滴被上升气流挟带而上升时,小水滴也可以赶上大水滴与之合并。这种在重力场中由于大小云滴速度不同而产生的冲并现象,称为重力冲并。实际上大水滴下降时,与空气相对运动,空气经过大水滴,会在其周围发生绕流,如图 3·13。半径为 R 的大水滴以末速度 v 下降的过程中,单位时间内扫过的体积是以πR2 为截面的圆柱体,位于圆柱体中的小水滴只有一部分与大水滴碰撞,另一部分小水滴将随气流绕过大滴而离开,不发生碰撞。水滴重力冲并增长的快慢程度与云中含水量及大小水滴的相对速度成正比。即云中含水量越大,大小水滴的相对速度越大,则单位时间内冲并的小水滴越多,重力冲并增长越快。

计算和观测表明,对半径小于 20μm 的云滴,其重力冲并增长作用可忽略不计,但对半径大于 30μm 的大水滴却在很短的时间内,就可通过重力冲并增长达到半径为几个毫米的雨滴。大水滴越大,冲并增长越迅速。也就是说,水滴的冲并增长是一种加速过程。

实际的云中云滴大小不一,在空间的分布也不均匀,云中云滴与云滴之间的冲并过程是一种随机过程。这种观点在认识暖云水滴增长问题上,是个重要的进展。在该观点的基础上,提出了随机(或统计性)冲并模式。该模式认为在每一时间间隔内云滴的增长为概率性的。有的云滴冲并增大,有的则保持不变。这样在下一时间间隔内,有的云滴而能获两次增长机会,有的只获一次,有的还保持不变。这个概念十分重要,因为它不仅说明了凝结增长过程的窄滴谱拓宽的机制,而且也解释了云中为何有少数云滴能因随机冲并而增长得比一般云滴快得多。

(3·9) - 图9

此外由于云中分子的不规则运动、云中空气的湍流混合、云滴带有正负不同的电荷以及流体吸力等原因,也可引起云滴的相互冲并。

由于冲并作用,水滴不断增大,在空气中下降时就不再保持球形。开始下降时,底部平整,上部因表面张力而保持原来的球形。当水滴继续增大, 在空气中下降时,除受表面张力外,还要受到周围作用在水滴上的压力以及因重力引起的水滴内部的静压力差,二者均随水滴的增长及下降而不断增大。在三种力的作用下,水滴变形越来越剧烈,底部向内凹陷,形成一个空腔。空腔越变越大,越变越深,上部越变越薄,最后破碎成许多大小不同的水滴。水滴在下降过程中保持不破碎的最大尺度称为临界尺度,常用等体积球体的半径来表示,称为临界半径或破碎半径。在不同的气流条件下,临界半径是不同的。如在均匀气流条件下,临界半径为 450—500μm。而在有扰动的瞬时气流条件下,临界半径约为 300μm。在自然界中观测到的临界半径为 300—350μm,这是因为大气具有湍流的缘故。当大气中的雨滴增大到 300

—350μm 时,就要破碎成几个较大的滴和一些小滴,它们可以被上升气流携带上升,并在上升过程中作为新一代的胚胎而增长,长大到上升气流支托不住时再次下降,在下降过程中继续增大,当大到临界半径后,再次破碎分裂而重复上述过程。云中水滴增大—破碎—再增大—再破碎的循环往复过程, 常用来解释暖云降水的形成,称之为“链锁反应”,有时也称为暖云的繁生机制。

产生“链锁反应”的条件是:上升气流要大于 6m/s(对于不同的滴有不同的要求),云中含水量要大于 2g/m3,同时还要求一定的云厚。当然,“链锁反应”不会无限地继续下去,因为强烈的上升气流无法持久,云的宏观条件和微观结构也在迅速改变。同时,当大量雨滴下降时会抑制上升气流,或带来下沉气流。例如雷雨时的情况,下一阵大雨之后、云体即崩溃消散。

上述两种云滴增大过程在由云滴转化为降水的过程中始终存在。但观测

表明,在云滴增长的初期,凝结(或凝华)增长为主,冲并为次。当云滴增大到一定阶段(一般直径达 50—70μm)后,凝结(或凝华)过程退居次要地位,而以重力冲并为主。在低纬度地区,云中出现冰水共存的机会较少, 形成所谓暖云(指整个云体的温度在 0℃以上,云体由水滴构成,又称为水成云)降水,这时冲并作用更为重要。总之,凝结(或凝华)增长和冲并增长两种过程是不可分割的。我们必须辩证地看待这两种过程的作用,以深入了解降水形成的理论,为人工控制降水奠定基础。

二、雨和雪的形成

(一)雨的形成

由液态水滴(包括过冷却水滴)所组成的云体称为水成云。水成云内如果具备了云滴增大为雨滴的条件,并使雨滴具有一定的下降速度,这时降落下来的就是雨或毛毛雨。由冰晶组成的云体称为冰成云,而由水滴(主要是过冷却水滴)和冰晶共同组成的云称为混合云。从冰成云或混合云中降下的冰晶或雪花,下落到 0℃以上的气层内,融化以后也成为雨滴下落到地面, 形成降雨。

在雨的形成过程中,大水滴起着重要的作用。当水滴半径增大到 2—3mm 时,水分子间的引力难以维持这样大的水滴,在降落途中,就很容易受气流的冲击而分裂,通过“连锁反应”,使大水滴下降,小水滴继续存在,形成新的大水滴。这是上升气流较强的水成云和混合云中形成雨的重要原因。

(二)雪的形成

在混合云中,由于冰水共存使冰晶不断凝华增大,成为雪花。当云下气温低于 0℃时,雪花可以一直落到地面而形成降雪。如果云下气温高于 0℃ 时,则可能出现雨夹雪。雪花的形状极多,有星状、柱状、片状等等,但基本形状是六角形。

雪花之所以多呈六角形,花样之所以繁多,是因为冰的分子以六角形为最多,对于六角形片状冰晶来说,由于它的面上、边上和角上的曲率不同, 相应地具有不同的饱和水汽压,其中角上的饱和水汽压最大,边上次之,平面上最小。在实有水汽压相同的情况下,由于冰晶各部分饱和水汽压不同, 其凝华增长的情况也不相同。例如当实有水汽压仅大于平面的饱和水汽压时,水汽只在面上凝华,形成的是柱状雪花。当实有水汽压大于边上的饱和水汽压时,边上和面上都会发生凝华。由于凝华的速度还与曲率有关,曲率大的地方凝华较快,故在冰晶边上凝华比面上快,多形成片状雪花。当实有水汽压大于角上的饱和水汽压时,虽然面上、边上、角上都有水汽凝华,但尖角处位置突出,水汽供应最充分,凝华增长得最快,故多形成枝状或星状雪花。再加上冰晶不停地运动,它所处的温度和湿度条件也不断变化,这样就使得冰晶各部分增长的速度不一致,形成多种多样的雪花。

三、各类云的降水

不同的云,由于其水平范围、云高、云厚、云中含水量、云中温度和升降气流等情况不同,因而降水的形态、强度、性质也随之而有差异。

(一)层状云的降水

层状云一般包括高层云、层积云、雨层云和卷层云。卷层云是冰晶组成的,由于冰面饱和水汽压小于同温度下水面饱和水汽压,使冰晶可以在较小的相对湿度(可以小于 100%)情况下增大。但是,因卷层云中含水量较小, 云底又高,所以除了在冬季高纬度地区的卷云可以降微雪以外,卷层云一般是不降水的。

雨层云和高层云经常是混合云,所以云滴的凝华增大和冲并增大作用都存在,雨层云和高层云的降水与云厚和云高有密切关系。云厚时,冰水共存的层次也厚,有利于冰晶的凝华增大,而且云滴在云中冲并增大的路程也长, 因此有利于云滴的增大。云底高度低时,云滴离开云体降落到地面的路程短, 不容易被蒸发掉,这就有利于形成降水。所以对雨层云和高层云来说,云愈厚、愈低,降水就愈强。雨层云比高层云的降水大得多,也主要是这个缘故。

由于层状云云体比较均匀,云中气流也比较稳定,所以层状云的降水是连续性的,持续时间长,降水强度变化小。

(二)积状云的降水

积状云一般包括淡积云、浓积云和积雨云。

淡积云由于云薄,云中含水量少,而且水滴又小,所以一般不降水。 浓积云是否降水则随地区而异。在中高纬度地区,浓积云很少降水。在

低纬度地区,因为有丰富的水汽和强烈的对流,浓积云的厚度、云中含水量和水滴都较大,虽然云中没有冰晶存在,但水滴之间冲并作用显著,故可降较大的阵雨。

积雨云是冰水共存的混合云,云的厚度和云中含水量都很大,云中升降气流强,因此云滴的凝华增长和冲并作用均很强烈,致使积雨云能降大的阵雨、阵雪,有时还可下冰雹。

积状云的降水是阵性的。这是因为,一方面它的云体水平范围与垂直伸展的尺度差不多,也就是说它的水平范围小,经过一个地方用不了多少时间, 因而降水的起止很突然。另一方面是由于积状云中,升降气流多变化,上升气流强时,降水物被“托住”降落不下来。当上升气流减弱或出现下沉气流时,降水物骤然落下,也使降水具有阵性。

(三)波状云的降水

波状云由于含水量较小,厚度不均匀,所以降水强度较小,往往时降时停,具有间歇性。层云只能降毛毛雨,层积云可降小的雨、雪和霰。高积云很少降水。但在我国南方地区,由于水汽比较充沛,层积云也可产生连续性降水,高积云有时也可产生降水。

四、人工影响云雨

人工影响云雨是人类控制自然的重要方面。一百多年前,我国就有炮轰雷雨云的防雹尝试。近几十年来,科学技术的进步,国内外人工影响云、雾、降水的方法取得了很大的进展。

人工降雨就是根据自然界降水形成的原理,人为地补充某些形成降水所

必须的条件,促使云滴迅速凝结或并合增大,形成降水。所采用的方法,因云的性质不同,有以下几种:

(一)人工影响冷云降水

中纬度地区冬季经常出现大范围的过冷却层状云,但很少降水。夏季也经常出现云顶高于 0℃层高度的积状云,其中能产生降水的也为数不多。根据贝吉龙学说,这种云之所以没有降水,主要是云内缺乏冰晶,云滴得不到增长。影响冷云降水的基本原理是设法破坏云的物态结构,也就是在云内制造适量的冰晶,使其产生冰晶效应,使水滴蒸发,冰晶增长。当冰晶长大到一定尺度后,发生沉降,沿途由于凝华和冲并增长而变成大的降水质点下降, 这就是所谓冷云的“静力催化”。60 年代又提出了“动力催化”试验,其依据是:在云体的过冷却(-10℃)部分,大量而迅速地引入人工冰核。当冰核转化成冰晶时,要释放大量潜热,使云内温度升高,形成或增大上升气流, 促使云体在垂直和水平方向迅速发展,相应延长云的生命期,加速云内降水形成过程,从而增加降水量。静力催化与动力催化都是从影响云的微物理结构着手,所不同的是静力催化着眼于云内水的相态不稳定性,动力催化立足于影响或加强云内的热力不稳定。

在云内人工产生冰晶的方法有二种,一种是在云中投入冷冻剂,如干冰

(即固体二氧化碳),在 1013hPa 下,其升华温度为-79℃。将干冰投入过冷却云中后,在它的周围薄层内便形成一个冷区,在此冷区内,过饱和度很大, 因此水汽分子结合物能够存在和长大。试验表明,当温度低于-40℃时,即有自生冰晶。因此,在干冰周围形成了大量的冰晶胚胎,其中较大的冰晶经过湍流扩散到四周空间,以后继续成长为更大的降水质点而下落。在不同温度下,干冰所产生的冰晶数是不同的。理论计算指出,一克干冰所产生的冰晶数是随气温的降低而增加的。温度从-1℃降至-20℃时,所产生的冰晶数从5.55×1011 个增到 1.22×1014 个,它比实验值要大些。按实验室测定,当云温为-2—-15℃时每克干冰可产生 8×1011 个冰晶。

另一种方法是引入人工冰核(凝华核或冻结核)。目前人们认为碘化银是一种非常有效的冷云催化剂。碘化银具有三种结晶形状,其中六方晶形与冰晶的结构相似,能起冰核作用,适用于-4—-15℃的冷云催化。每克碘化银所能产生的冰晶数视温度而定,温度低,有效冰核数目多,产生的冰晶数也多。例如当温度 t=-10℃时,一克碘化银能产生 1010—1012 个冰核,当 t=-20

℃时则能产生 1016 个冰核。

对碘化银成冰作用的机制,多年来争论很大,有人认为水汽分子直接在AgI 质点上凝华形成冰晶,碘化银起凝华核的作用。也有人认为碘化银起冻结核作用,一开始碘化银质点作为凝结核形成水滴,然后再冻结产生冰晶。另外也有人认为碘化银起接触核的作用,也就是碘化银质点与过冷水滴互相碰撞后冻结而形成冰晶。有的云雾工作者又提出这样的看法:自然界中的水汽过饱和度一般是小于 1%的,当温度低于-12℃时,碘化银质点的成冰机制主要是凝华作用。当温度在-12—-5℃时,主要是起先凝结后冻结的作用。当温度等于-5℃时,起接触核的作用比较明显。

(二)人工影响暧云降水

整个云体温度高于 0℃的云称为暖云。我国南方夏季的浓积云、层积云

多属于这种云。在暖云中,胶性稳定状态①的维持往往是由于云中缺乏大水滴,滴谱较窄,冲并作用不易进行之故。暖云内不可能有冰晶效应,促使降水形成起决定性作用的是水滴大小不均匀和冲并过程。因此,要人工影响暖云降水可以引入吸湿性核(如食盐)。由于其能在低饱和度下凝结增长,故可在短时间内形成数十微米以上的大滴。也可直接引入 30—40μm 的大水滴,从而拓宽滴谱,加速冲并增长的过程,达到降水的目的。或引入表面活性物质(能显著减小水滴表面张力又可抑制蒸发的物质),改变水滴的表面张力状态,以利于形成大水滴并促使其破碎,加速链锁反应,从而形成降水。

我国南方大量的野外试验中,发现在暖性对流云顶播撒大颗粒(直径大于 100μm)、大剂量(每千米几十千克)的盐粉,效果很显著。对于发展快、垂直厚度大、含水量丰富而又有上升气流的暖性对流云进行反复催化,可以得到大量降水。但是这种方法消耗食盐量大,效率低。要求飞机有较大的载量。

在美国、澳大利亚和我国都曾对暖云作过播散大水滴的试验,用飞机从云顶或云下部撒水。

发现能使暖云降水有所发展,并可使薄云消散。用这种方法要求飞机有较大的载量,其效能也不如播散吸湿性物质。

五、降水分布

图 3·14 和图 3·15 给出了全球 6—8 月和 12—2 月降水总量的分布,它们比平均温度分布图要复杂得多。在带状分布中有三个主要特点:①有一个赤道降水最大值,其位置和热赤道一样,略偏在北半球;②高纬度的降水总量很小;③在副热带纬度是一个次低值,尽管副热带高压区是著名的干旱区, 但在这个纬度中,大陆东岸的夏季,降雨量还是相当多的。

降水的分布与大气的运动、气团和锋带的活动以及海陆分布等有密切的关系。分析图 3·14、图 3·15 时,要注意到下列因子:①空气温度对大气最大水汽含量的限制。这一点对高纬度和冬季大陆内部很重要;②纬向的水汽输送主要是由大气平流造成的。这本身反映了全球风系和它们的分布(特别是辐合的信风系统和多气旋的西风带);③海陆分布。值得注意的是南半球缺乏像北半球那样的广阔内陆。南半球浩瀚的海洋使得中纬度的风暴增加了纬向分布的降水平均值,45°S 与 50°N 相比,前者增加了约 1/3。另外季风的影响也是不可忽视的因素,尤其是在亚洲;④山区的分布对局地盛行风的影响,也制约着降水分布。

① 胶性稳定状态:云是由悬浮在空气中的液态水滴和冰晶、雪花等所组成的气溶胶体,按照胶体化学的说法,悬浮在气相中的这种液相或固相的水质点如果保持其各自的原有状态不变,则称作胶性稳定。如果这些质点,互相并合、尺度增大,发生沉降而从胶体中分离出来,称为胶性不稳定。

第四章 大气的运动

大气时刻不停地运动着,运动的形式和规模复杂多样。既有水平运动, 也有垂直运动。既有规模很大的全球性运动,也有尺度很小的局地性运动。大气的运动使不同地区、不同高度间的热量和水分得以传输和交换,使不同性质的空气得以相互接近、相互作用,直接影响着天气、气候的形成和演变。

大气运动的产生和变化直接决定于大气压力的空间分布和变化。因而, 研究大气运动常常从大气压力的时空分布和变化入手。

第一节 气压随高度和时间的变化一、气压随高度的变化

一个地方的气压值经常有变化,变化的根本原因是其上空大气柱中空气质量的增多或减少。大气柱质量的增减又往往是大气柱厚度和密度改变的反映。当气柱增厚、密度增大时,则空气质量增多,气压就升高。反之,气压则减小。因而,任何地方的气压值总是随着海拔高度的增高而递减。如图 4·1 所示,甲气柱从地面到 1000m 和从 1000m 到

(3·9) - 图10

2000m,虽然都是减少同样高度的气柱,但是低层空气密度大于高层,因而低层气压降低的数值大于高层。据实测,在地面层中,高度每升 100m,气压平均降低 12.7hPa,在高层则小于此数值。确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。

(一)静力学方程

假设大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受铅直气柱的重量。见图 4·2,在大气柱中截取面积为 1cm2,厚度为△Z 的薄气柱。设高度 Z1 处的气压为 P1,高度 Z2 处的气压为 P2,空气密度为ρ,重力加速度为 g。在静力平衡条件下,Z1 面上的气压 P1 和 Z2 面上的气压 P2 间的气压差应等于这两个高度面间的薄气柱重量,即

P2-P1=-△P=-ρg(Z2-Z1)=-ρg△Z

式中负号表示随高度增高,气压降低。若△Z 趋于无限小,则上式可写

-dP=ρgdZ (4.1)

上式是气象上应用的大气静力学方程。方程说明,气压随高度递减的快

慢取决于空气密度(ρ)和重力加速度(g)的变化。重力加速度(g)随高度的变化量一般很小,因而气压随高度递减的快慢主要决定于空气的密度。在密度大的气层里,气压随高递减得快,反之则递减得慢。实践证明,静力学方程虽是静止大气的理论方程,但除在有强烈对流运动的局部地区外,其误差仅有 1%,因而得到广泛应用。将(4·1)式变换

  • dP = ρg dZ

P

将状态方程ρ = R T 代入,得:

  • (3·9) - 图11dP

    = g P dZ Rd T

- dP 称为铅直气压梯度或单位高度气压差,它表示每升高1个单位

dZ

高度所降低的气压值。

实际工作中还经常引用气压高度差(h),它表示在铅直气柱中气压每改变一个单位所对应的高度变化值。显然它是铅直气压梯度的倒数,即

h = Rd T

Pg

式中 Rd=287J/kgK 为干空气的气体常数。将 Rd、g 值代入,并将 T 换成摄氏温标 t,则得

h≈ 8000 (1 + t / 273)(m / hPa) P

(4·2)

表 4·l 是根据(4·2)式计算出的不同气温和气压下的 h 值。

表 4 · 1 不同温度、气压条件下的h 值( m/hPa )

P ( hPa )

t (℃)

-40

-20

0

20

40

1000

6.7

7.4

8.0

8.6

9.3

500

13.4

14.7

16.0

17.3

18.6

100

67.2

73.6

80.0

86.4

92.8

从表 4·l 中可以看出:①在同一气压下,气柱的温度愈高,密度愈小, 气压随高度递减得愈缓慢,单位气压高度差愈大。反之,气柱温度愈低,单位气压高度差愈小。②在同一气温下,气压值愈大的地方,空气密度愈大, 气压随高度递减得愈快,单位高度差愈小。反之,气压愈低的地方单位气压高度差愈大。比如愈到高空,空气愈稀薄,虽然同样取上下气压差一个百帕, 而气柱厚度却随高度而迅速增大。

通常,大气总处于静力平衡状态,当气层不太厚和要求精度不太高时,

(4·2)式可以用来粗略地估算气压与高度间的定量关系,或者用于将地面气压订正为海平面气压。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该式就难以直接运用,就需采用适合于较大范围气压随高度变化的关系式,即压高方程。

(二)压高方程

为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程

∫P2 dP = −∫Z2 ρgdZ

(4·3)

P1 Z1

式中,P1、P2 分别是高度 Z1 和 Z2 的气压值。该式表示任意两个高度上的气压差等于这两个高度间单位截面积空气柱的重量。用状态方程替换式中的ρ,得

∫P2 dP = −∫z2 g dZ

P1 P Z1 RT

1n P2 = −∫Z2 g dZ

P1 Z1 RT

Z g

P = P e − 2 dz

(4.4)

2 1 Z1 RT

(4·4)式是通用的压高方程。它表示气压是随高度的增加而按指数递减的规律。而且在大气低层,气压递减得快,在高层递减得慢。在温度低时,气压递减得快,在温度高时,递减得慢。利用(4·4)式原则上可以进行气压和高度间的换算,但直接计算还比较困难。因为在公式中指数上的子式中,g 和 T 都随高度而有变化,而且 R 因不同高度上空气组成的差异也会随高度而变化,因而进行积分是困难的。为了方便实际应用,需要对方程作某些特定假设。比如忽略重力加速度的变化和水汽影响,并假定气温不随高度发生变化,此条件下的压高方程,称为等温大气压高方程。在等温大气中,(4·4) 式中的 T 可视为常数,于是得

P = P e g(Z2 − Z1 )

2 1 RT

或写成

1n P2

P1

= − g RT

(Z2 − Z1 )

Z − Z

= RT 1n P1

(4·5)

2 1 g P

式中负号取消是因为将 P1 和 P2 的位置上下调换。从(4·5)式中可以看出,等温大气中,气压随高度仍是按指数规律递减的,其变化曲线见图 4·3 中实线。将 T 换成 t,自然对数换成常用对数,并将 g、R 代入,则(4·5) 式变成气象上常用的等温大气压高方程:

Z2 − Z1

= 18400(1 + t / 273) log P1

P

(4·6)

2

实际大气并非等温大气,所以应用(4·6)式计算实际大气的厚度和高度时,必须将大气划分为许多薄层,求出每个薄层的 tm,然后分别计算各薄层的厚度,最后把各薄层的厚度求和便是实际大气的厚度。表 4·2 是利用

(4·6)式计算的标准大气①中气压与高度的对应值。

① 标准大气:根据世界气象组织规定,标准大气的条件是:1.干洁空气,且成分比例不随高度变化。2. 海平面气温为 15℃,海平面气压为 1013.25hPa,海平面空气密度为 1.225kg/m3。3.对流层顶高 11km。4.对流层内的气温直减率γ=0.65℃/100m;平流层内的γ=0,温度恒为-56.5℃。

表 4 · 2 标准大气中气压与高度的对应值

气压

( hPa )

1013.3

845.4

700.8

504.7

410.4

307.1

193.1

102.8

46.7

高度( m )

0

1500

3000

5500

7000

9000

12000

16000

21000

(4.6)式中把重力加速度 g 当成常数,实际上 g 随纬度和高度而有变化,要求得精确的 Z 值,还必须对 g 作纬度和高度的订正。一般说,在大气低层g 随高度的变化不大,但将此式应用到 100km 以上的高层大气时,就必须考虑 g 的变化。此外,(4·6)式是把大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。

假设温度直减率(γ)不随高度变化的大气称多元大气。若取海平面的气温为 T0,于是任意高度 Z 处的气温 T=T0-γZ。令 Z0=0,海平面气压为 P0, 任意高度 Z 上的气压为 Pz,应用(4·4)式有

1n Pz = −∫Z g dZ = g 1n T0 − γ z

T − γ g

= 1n( 0 z )

P0 O R(T0 − γ z )

Rγ T0 T0

γZ g

即 Pz = P0 (1 −

) Rγ

T0

(4·7)

(4·7)式表示在多元大气中,气压随高度也是按指数规律递减的。当γ=0.6℃/100m,T0=273K,P0=1000hPa 时,气压随高度降低的情况如图 4·3 中的虚线所示。图中实线是等温大气的情况,其气压随高度的递减比多元大气慢一些。实际大气与多元大气更为接近。

二、气压随时间的变化

(一)气压变化的原因

某地气压的变化,实质上是该地上空空气柱重量增加或减少的反映,而空气柱的重量是其质量和重力加速度的乘积。重力加速度通常可以看作是定值,因而一地的气压变化就决定于其上空气柱中质量的变化,气柱中质量增多了,气压就升高。质量减少了,气压就下降。空气柱质量的变化主要是由热力和动力因子引起。热力因子是指温度的升高或降低引起的体积膨胀或收缩、密度的增大或减小以及伴随的气候辐合或辐散所造成的质量增多或减少。动力因子是指大气运动所引起的气柱质量的变化,根据空气运动的状况可归纳为下列三种情况。

(3·9) - 图12

  1. 水平气流的辐合与辐散

空气运动的方向和速度常不一致。有时运动的方向相同而速度不同,有时速度相同而方向各异,也有时运动的方向、速度都不相同。这样可能引起空气质量在某些区域堆聚,而在另一些地区流散。图 4·4a、c 表示了各点的空气都背着同一线或同一点散开,而且前面空气运动速度快,后面的运动速度慢,显然这个区域里的空气质点会逐渐向周围流散,引起气压降低,这种现象称为水平气流辐散。相反,图 4·4b、d 表示各点空气向着同一点或同一线集聚,而且前面空气质点运动速度慢,后面运动速度快,结果这个区域里空气质点会逐渐聚积起来,引起气压升高,这种现象称水平气流辐合。实际大气中空气质点水平辐合、辐散的分布比较复杂,有时下层辐合、上层辐散, 有时下层辐散、上层辐合,在大多数情况下,上下层的辐散、辐合交互重叠非常复杂。因而某一地点气压的变化要依整个气柱中是辐合占优势还是辐散占优势而定。

  1. 不同密度气团的移动

不同性质的气团,密度往往不同。如果移到某地的气团比原来气团密度大,则该地上空气柱中质量会增多,气压随之升高。反之该地气压就要降低。例如冬季大范围强冷空气南下,流经之地空气密度相继增大,地面气压随之明显上升。夏季时暖湿气流北上,引起流经之处密度减小,地面气压下降。

  1. 空气垂直运动

当空气有垂直运动而气柱内质量没有外流时,气柱中总质量没有改变, 地面气压不会发生变化。但气柱中质量的上下传输,可造成气柱中某一层次空气质量改变,从而引起气压变化。图 4·5 中位于 A、B、C 三地上空某一高度上 a、b、c 三点的气压,在空气没有垂直运动时应是相等的。而当 B 点有空气上升运动时,空气质量由低层向上输送,b 点因上空气柱中质量增多而气压升高。C 地有空气下沉运动,空气质量由上层向下层输送,c 点因上空气柱中质量减少而气压降低。由于近地层空气垂直运动通常比较微弱,以致空气垂直运动对近地层气压变化的影响也较微小,可略而不计。

(3·9) - 图13

(3·9) - 图14(3·9) - 图15

实际大气中气压变化并不由单一情况决定,而往往是几种情况综合作用的结果,而且这些情况之间又是相互联系、相互制约、相互补偿的。如图 4·6 所示,上层有水平气流辐合、下层有水平气流辐散的区域必然会有空气从上层向下层补偿,从而出现空气的下沉运动。反之,则会出现空气上升运动。同理,在出现空气垂直运动的区域也会在上层和下层出现水平气流的辐合和辐散。

(二)气压的周期性变化

气压的周期性变化是指在气压随时间变化的曲线上呈现出有规律的周期性波动,明显的是以日为周期和以年为周期的波动。

地面气压的日变化有单峰、双峰和三峰等型式,其中以双峰型最为普遍, 其特点是一天中有一个最高值、一个次高值和一个最低值、一个次低值(图4·7)。一般是清晨气压上升,9—10 时出现最高值,以后气压下降,到 15

—16 时出现最低值,此后又逐渐升高,到 21—22 时出现次高值,以后再度

下降,到次日 3—4 时出现次低值。最高、最低值出现的时间和变化幅度随纬度而有区别,热带地区气压日变化最为明显,日较差可达 3—5hPa。随着纬度的增高,气压日较差逐渐减小,到纬度 50°日较差已减至不到 1hPa。

气压日变化的原因比较复杂,现在还没有公认的解释。一般认为同气温

日变化和大气潮汐密切相关。比如气压一日波(单峰型)同气温的日变化关系很大。当白天气温最高时,低层空气受热膨胀上升,升到高空向四周流散, 引起地面减压;清晨气温最低时,空气冷却收缩,气压相应升到最高值。只是由于气温对气压的影响作用需要经历一段过程,以致气压极值出现的相时落后于气温。同时,气压日变化的振幅同气温一样随海陆、季节和地形而有区别,表现出陆地大于海洋、夏季大于冬季、山谷大于平原。气压的半日波

(双峰型)可能同一日间增温和降温的交替所产生的整个大气半日振动周期,以及由日月引起的大气潮相关。至于三峰型气压波似应与一日波、半日波以及局部地形条件等综合作用有关。

气压年变化是以一年为周期的波动,受气温的年变化影响很大,因而也同纬度、海陆性质、海拔高度等地理因素有关。在大陆上,一年中气压最高值出现在冬季,最低值出现在夏季,气压年变化值很大,并由低纬向高纬逐渐增大。海洋上一年中气压最高值出现在夏季,最低值出现在冬季,年较差小于同纬度的陆地。高山区一年中气压最高值出现在夏季,是空气受热,气柱膨胀、上升,质量增加所致,而最低值出现在冬季,是空气受冷,气柱收缩、空气下沉、高山质量减少的结果。见图 4·8。

(3·9) - 图16

(三)气压的非周期性变化

气压的非周期性变化是指气压变化不存在固定周期的波动,它是气压系统移动和演变的结果。通常在中高纬度地区气压系统活动频繁,气团属性差异大,气压非周期性变化远较低纬度明显。如以 24h 气压的变化量来比较, 高纬度地区可达 10hPa,低纬度地区因气团属性比较接近,气压的非周期变化量很小,一般只有 1hPa。

一个地方的地面气压变化总是既包含着周期变化,又包括着非周期变化,只是在中高纬度地区气压的非周期性变化比周期性变化明显得多,因而气压变化多带有非周期性特征。在低纬度地区气压的非周期性变化比周期性变化弱小得多,因而气压变化的周期性比较显著。当然,遇有特殊情况下也会出现相反的情况。

第二节 气压场

气压的空间分布称为气压场。由于各地气柱的质量不相同,气压的空间分布也不均匀,有的地方气压高,有的地方气压低,气压场呈现出各种不同的气压形势,这些不同的气压形势统称气压系统。

一、气压场的表示方法

(一)等压线和等压面

气压的水平分布形势通常用等压线或等压面来表示。等压线是同一水平面上各气压相等点的连线。等压线按一定气压间隔(如 2.5hPa 或 5hPa)绘出,构成一张气压水平分布图。若绘制的是海平面的等压线,就是一张海平面气压分布图。若绘制的是 5000m 高空的等压线,就成为一张 5000m 高空的气压水平分布图(等高面图)。等压线的形状和疏密程度反映着水平方向上气压的分布形势。

等压面是空间气压相等点组成的面。如 700hPa 等压面上各点的气压值都等于 700hPa。由于气压随高度递减,因而在某一等压面以上各处的气压值都小于该等压面上气压值,等压面以下各处则反之。用一系列等压面的排列和分布可以表示空间气压的分布状况。

实际大气中由于下垫面性质的差异、水平方向上温度分布和动力条件的不均匀,以致同一高度上各地的气压不可能是一样的。因而等压面并不是一个水平面,而像地表形态一样,是一个高低起伏的曲面。等压面起伏形势同它附近水平面上的气压高低分布有对应关系。等压面下凹部位对应着水平面上的低压区域,等压面愈下凹,水平面上气压低得愈多。等压面向上凸起的部位对应着水平面上的高压区域,等压面愈上凸,水平面上高压愈强大。根据这种对应关系,可求出同一时间等压面上各点的位势高度值,并用类似绘制地形等高线的方法,将某一等压面上相对于海平面的各位势高度点投影到海平面上,就得到一张等位势高度线(等高线)图,此图能表示该等压面的形势,故这种图称为等压面图。见图 4·9,图中 P 为等压面,H1、H2、H3⋯ 为高度间隔相等的若干等高面,它们分别与等压面 P 相截(截线以虚线表示),每条截线都在等压面 P 上,所以截线上各点的气压值均相等,将这些截线投影到水平面上,便得出 P 等压面上距海平面高度分别为 H1、H2、H3⋯ 的许多等高线。由图可见,和等压面凸起部位相对应的是由一组闭合等高线构成的高值区域,高度值由中心向外递减,同理,和等压面下凹部位相对应的是由一组团合等高线构成的低值区域,高度值由中心向外递增。因此,平面图中等高线的高、低中心即代表气压的高低中心,而且等高线的疏密同等压面的缓陡相对应,等压面陡的地方,如图中 A、B 处,对应于 A'、B'处的密集等高线,等压面平缓的地方如图中 C、D 处,对应于 C'、D'处的稀疏等高线。

气象上等高线的高度不是以米为单位的几何高度,而是位势高度。所谓

位势高度是指单位质量的物体从海平面(位势取为零)抬升到 Z 高度时,克服重力所作的功,又称重力位势,单位是位势米。在 SI 制中,1 位势米定义为 1kg 空气上升 1m 时,克服重力作了 9.8J 的功,也就是获得 9.8J/kg 的位势能,即

1 位势米= 9.8J/kg

位势高度与几何高度的换算关系为H =

gϕ Z 9.8

式中 H 为位势高度(位势米),Z 为几何高度(m),gϕ,为纬度φ处的重力

加速度(m/s2)。当 gϕ取 9.8m/s2 时,位势高度 H 和几何高度 Z 在数值上相同,但两者物理意义完全不同,位势米是表示能量的单位,几何米是表示几何高度的单位。由于大气是在地球重力场中运动着,时刻受到重力的作用, 因此用位势米表示不同高度气块所具有的位能,显然比用几何高度要好。

(3·9) - 图17

气象台日常工作所分析的等压面图有 850hPa、700hPa、500hPa 以及 300、200、100hPa 等,它们分别代表 1500m、3000m、5500m 和 9000m、12000m、16000m 高度附近的水平气压场。海平面气压场一般用等高面图(零高度面)来分析, 必要时也用 1000hPa 等压面图来代替。

二、气压场的基本型式

低空气压水平分布的类型,一般从海平面图上等压线的分布特征来确定:

(一)低气压

简称低压,是由闭合等压线构成的低气压区。气压值由中心向外逐渐增高。空间等压面向下凹陷,形如盆地。见图 4·10a。

(二)低压槽

简称槽,是低气压延伸出来的狭长区域。在低压槽中,各等压线弯曲最大处的连线称槽线。气压值沿槽线向两边递增。槽附近的空间等压面类似地形中狭长的山谷,呈下凹形。

(三)高气压

简称高压,由闭合等压线构成,中心气压高,向四周逐渐降低,空间等压面类似山丘,呈上凸状,见图 4·10b。

(3·9) - 图18

(3·9) - 图19

(四)高压脊

简称脊,是由高压延伸出来的狭长区域,在脊中各等压线弯曲最大处的连线叫脊线,其气压值沿脊线向两边递减,脊附近空间等压面类似地形中狭长山脊。

(五)鞍形气压场

简称鞍,是两个高压和两个低压交错分布的中间区域。鞍形区空间的等压面形似马鞍。图 4·11。

以上几种气压水平分布型式统称气压系统。气压系统存在于三度空间中。由于愈向高空受地面影响愈小,以致高空气压系统比低空系统要相对简单,大多呈现出沿纬向的平直或波状等高线,有时也有闭合系统如切断低压、阻塞高压。见图 4·12。

(3·9) - 图20

三、气压系统的空间结构

气压系统存在于三度空间中,在静力平衡下,气压系统随高度的变化同

温度分布密切相关。因此气压系统的空间结构往往由于与温度场的不同配置状况而有差异。当温度场与气压场配置重合(温度场的高温、低温中心分别与气压场的高压、低压中心相重合)时,称气压系统是温压场对称。当温度场与气压场的配置不重合时,称气压系统是温压场不对称。

(一)温压场对称系统

由于温压场配置重合,所以该系统中水平面上等温线与等压线是基本平行的。系统中包括暖性高压、冷性低压和暖性低压、冷性高压,图 4·13。

  1. 暖性高压

高压中心区为暖区,四周为冷区,等压线和等温线基本平行,暖中心与高压中心基本重合的气压系统。由于暖区单位气压高度差大于周围冷区,因而高压的等压面凸起程度随高度增加不断增大,即高压的强度愈向高空愈增强。

(3·9) - 图21

  1. 冷性低压

低压中心区为冷区,四周为暖区,等温线与等压线基本平行,冷中心与低压中心基本重合的气压系统。因为冷区单位气压高度差小于周围暖区,因而冷低压的等压面凹陷程度随高度增加而增大,即冷低压的强度愈向高空愈增强。

  1. 暖性低压

低压中心为暖区,暖中心与低压中心基本重合的气压系统。由于暖区的单位气压高度差大于周围冷区,所以低压等压面凹陷程度随高度升高而逐渐减小,最后趋于消失。如果温压场结构不变,随高度继续增加暖低压就会变成暖高压系统。

  1. 冷性高压

高压中心为冷区,冷中心与高压中心基本重合的气压系统。因为冷区单位气压高度差小于周围暖区,因而高压等压面的凸起程度随高度升高而不断减小,最后趋于消失。若温压场结构不变,随高度继续增加,冷高压会变成冷低压系统。

由上可见,暖性高压和冷性低压系统不仅存在于对流层低层,还可伸展

到对流层高层,而且其气压强度随高度增加逐渐增强,这类系统称为深厚系统。而暖性低压和冷性高压系统主要存在于对流层低空,称浅薄系统。

(二)温压场不对称系统

是指地面的高、低压系统中心同温度场冷暖中心配置不相重合的系统。这种气压系统,中心轴线不是铅直的,而发生偏斜。地面低压中心轴线随高度升高不断向冷区倾斜,高压中心轴线随高度升高不断向暖区倾斜。北半球中高纬度的冷空气多从西北方向移来,因而低压中心轴线常常向西北方向倾斜,而高压的西南侧比较温暖,高压中心轴线多向西南方向倾斜,见图 4·14。

(3·9) - 图22

大气中气压系统的温压场配置绝大多数是不对称的,对称系统是很少的,因而气压系统的中心轴线大多是倾斜的,系统的结构随高度发生改变的, 气压系统的温压场结构对于天气的形成和演变有着重要影响。

第三节 大气的水平运动和垂直运动

大气的水平运动对于大气中水分、热量的输送和天气、气候的形成、演变起着重要的作用。

一、作用于空气的力

空气的运动是在力的作用下产生的。作用于空气的力除重力之外,尚有由于气压分布不均而产生的气压梯度力,由于地球自转而产生的地转偏向力,由于空气层之间、空气与地面之间存在相对运动而产生的摩擦力,由于空气作曲线运动时产生的惯性离心力。这些力在水平分量之间的不同组合, 构成了不同形式的大气水平运动。

(一)气压梯度力

气压梯度是一个向量,它垂直于等压面,由高压指向低压,数值等于两等压面间的气压差(△P)除以其间的垂直距离(△N),用下式表达: