第五章 探索宇宙的航空知识

1.关于飞行环境

飞行器在大气层内飞行时所处的环境条件。包围地球的空气层(即大气)是航空器的唯一飞行活动环境,也是导弹和航天器的重要飞行环境。大气层无明显的上限,它的各种特性在铅垂方向上的差异非常明显,例如空气密度随高度增加而很快趋于稀薄。以大气中温度随高度的分布为主要依据,可将大气层划分为对流层、平流层、中间层、热层和散逸层(外大气层)等5个层次。航空器的大气飞行环境是对流层和平流层。大气层对飞行有很大影响,恶劣的天气条件会危及飞行安全,大气属性(温度、压力、湿度、风向、风速等)对飞机飞行性能和飞行航迹也会产生不同程度的影响。

大气层

对流层

地球大气中最低的一层。对流层中气温随高度增加而降低,空气的对流运动极为明显,空气温度和湿度的水平分布也很不均匀。对流层的厚度随纬度和季节变化,一般低纬度地区平均为16~18公里;中纬度地区平均为10~12公里;高纬度地区平均为8~9公里。就季节而言,中国绝大部分地区一般都是夏季对流层厚,冬季对流层薄。对流层集中了全部大气约四分之三的质量和几乎全部的水汽,是天气变化最复杂的层次,也是对飞行影响最重要的层次。飞行中所遇到的各种重要天气现象几乎都出现在这一层中,如雷暴、浓雾、低云幕、雨、雪、大气湍流、风切变等。在对流层内,按气流和天气现象分布的特点,又可分为下层、中层和上层3个层次。

对流层下层:又称摩擦层。它的范围自地面到1~2公里高度。但在各地的实际高度又与地表性质、季节等因素有关。一般说来,其高度在粗糙地表上高于平整地表上,夏季高于冬季(北半球),昼间高于夜间。在下层中,气流受地面摩擦作用很大,风速通常随高度增加而增大。在复杂的地形和恶劣天气条件下,常存在剧烈的气流扰动,威胁着飞行安全。突发的下冲气流和强烈的低空风切变常会引起飞机失事。另外,充沛的水汽和尘埃往往导致浓雾和其他恶化能见度的现象,对飞机的起飞和着陆构成严重的障碍。为了确保飞行安全,每个机场都规定有各类飞机的起降气象条件。另外,对流层下层中气温的日变化极为明显,昼夜温差可达10~40°C。

对流层中层:它的底界即摩擦层顶,上界高度约为6公里,这一层受地表的影响远小于摩擦层。大气中云和降水现象大都发生在这一层内。这一层的上部,气压通常只及地面的一半,在那里飞行时需要使用氧气。一般轻型运输机、直升机等常在这一层中飞行。

对流层上层:它的范围从6公里高度伸展到对流层的顶部。这一层的气温常年都在0°C以下,水汽含量很少。各种云都由冰晶或过冷却水滴组成。在中纬度和副热带地区,这一层中常有风速等于或大于30米/秒的强风带,即所谓的高空急流。飞机在急流附近飞行时往往会遇到强烈颠簸,使乘员不适,甚至破坏飞机结构和威胁飞行安全。

此外,在对流层和平流层之间,还有一个厚度为数百米到1~2公里的过渡层,称为对流层顶。对流层顶对垂直气流有很大的阻挡作用。上升的水汽、尘粒等多聚集其下,那里的能见度往往较差。

平流层

位于对流层顶之上,顶界伸展到约50~55公里。在平流层内,随着高度的增加气温最初保持不变或微有上升,到25~30公里以上气温升高较快,到了平流层顶气温约升至270~290K。平流层的这种气温分布特征同它受地面影响小和存在大量臭氧(臭氧能直接吸收太阳辐射)有关。这一层过去常被称为同温层,实际上指的是平流层的下部。在平流层中,空气的垂直运动远比对流层弱,水汽和尘粒含量也较少,因而气流比较平缓,能见度较佳。对于飞行来说,平流层中气流平稳、空气阻力小是有利的一面,但因空气稀薄,飞行器的稳定性和操纵性恶化,这又是不利的一面。高性能的现代歼击机和侦察机都能在平流层中飞行。随着飞机飞行上限的日益增高和火箭、导弹的发展,对平流层的研究日趋重要。

中间层

从平流层顶大约50~55公里伸展到80~85公里高度。这一层的特点是:气温随高度增加而下降,空气有相当强烈的垂直运动。在这一层的顶部气温可低至160~190K。

热层

它的范围是从中间层顶伸展到约800公里高度。这一层的空气密度很小,声波也难以传播。热层的一个特征是气温随高度增加而上升。另一个重要特征是空气处于高度电离状态。热层又在电离层范围内。在电离层中各高度上空气电离的程度是不均匀的,存在着电离强度相对较强的几个层次,如D、E、F层。有时,在极区常可见到光彩夺目的极光。电离层的变化会影响飞行器的无线电通信。

散逸层

又称逃逸层、外大气层,是地球大气的最外层,位于热层之上。那里的空气极其稀薄,同时又远离地面,受地球的引力作用较小,因而大气分子不断地向星际空间逃逸。航天器脱离这一层后便进入太空飞行。

2.人造地球卫星

人造地球卫星是环绕地球在空间轨道上运行的无人航天器,简称人造卫星或卫星。通信及广播卫星、对地观测卫星和导航定位卫星,都是开发相对于地面的高位置空间资源的航天器,这类航天器一般又称为应用卫星。应用卫星是直接为国民经济、军事和文化教育等服务的人造卫星,是当今世界上发射最多、应用最广泛的航天器。

卫星技术与多种科学技术的交叉和渗透,产生了一些新技术,如卫星通信、卫星气象遥感、卫星导航、卫星侦察等,这些技术统称为卫星应用技术,卫星应用技术在国民经济、国防建设、文化教育和科学研究等方面发挥着越来越重要的作用,其综合效益十分显著。航天技术主要通过卫星应用转化为直接生产力和国家实力。卫星应用系统是航天工程系统的组成部分,同时也深入众多的应用部门发展成为应用部门的新技术系统。

自20世纪50年代以来,人类已先后发射了约5000多个人造航天器,其中绝大部分是人造地球卫星。我国在1970年发射了第一颗人造地球卫星东方红一号,卫星质量超过了苏联、美国、法国和日本等国的第一颗人造地球卫星的总和,这说明我国卫星技术的起步水平高。

东方红一号

通信卫星系统

通信卫星具有通信距离远、容量大、信号质量好、可靠性高和机动灵活等优点,因此在远距离通信、数据网络、电视教育、数据采集、电子邮件、政府行政管理、应急救灾、远程医疗、航海通信、个人移动电话等各种领域都得到了广泛的应用。

一颗在赤道上空定点的地球同步卫星可覆盖地球表面40%强,数颗同步通信卫星和地面站即可组成全球卫星通信系统。目前全世界约有近300颗同步通信卫星,这些通信卫星为200多个国家和地区提供了80%的国际通信业务,已形成每年数百亿美元的最大的航天产业。例如,国际通信卫星组织的卫星已发展到第8代,在轨的卫星有17颗。国际通信卫星8号载有44台转发器,具有可控C频段点波束,可提供3个电视频道和112500路数字话音。

近年来出现了近地轨道移动通信卫星星座。如铱星系统是共有66颗卫星组成的星座,在技术上非常先进,但话费太贵(3美元/分钟),结果铱星公司破产了。但这个趋势仍在发展。

对地观测卫星

对地观测卫星的种类很多,如资源卫星、气象卫星、海洋卫星、侦察卫星等。星上装有各类遥感设备(如相机、辐射计、雷达等),收集来自地球的陆地、海洋、大气层各种波长的电磁波辐射信息。然后对获取的信息进行分析,以识别物质的性质和状态。这种观测方式的视野广阔,不受地理位置和国界的限制,可以迅速获取大面积、甚至全球性的动态变化的信息。空间遥感在几天内完成的工作量如果用航空遥感需几个月,用人工勘测则需几年,甚至不可能完成。空间对地观测的宏观性和及时性使许多领域发生了革命性的变化。

导航卫星

导航卫星不受天气的限制,可以为卫星、飞机、导弹、船舶、车辆、人员进行导航。导航卫星网由数十颗卫星组成,也称为导航卫星星座,具有全球覆盖能力。导航卫星按导航方式不同可分为测速和测距卫星,根据卫星运行轨道的高度可分为低轨道、中高轨道和地球同步轨道导航卫星。

目前世界使用最多的全球卫星导航定位系统是美国的GPS系统。它采用时间测距定位原理,可对地面车辆、海上船只、飞机、导弹、卫星和飞船等各种移动用户进行全天侯的、实时的高精度三维定位测速和精确授时。

GPS系统是由分布在6个轨道面上的24颗卫星组成的星座。GPS卫星的轨道高度为20000km,星上装有10-13高精确度的原子钟。地面上有一个主控站和多个监控站,定期地对星座的卫星进行精确的位置和时间测定,并向卫星发出星历信息。用户使用GPS接收机同时接收4颗以上卫星的信号,即可确定自身所在的经纬度、高度及精确时间。

GPS系统的军用定位精度<10m,民用定位精度<100m。美国在海湾战争、科索沃战争和阿富汗战争中广泛使用了GPS系统。

俄罗斯也有类似的系统,名叫GLONASS系统。但由于俄经济困难,且卫星寿命短,星座不能保持足够数目,影响了其正常功能。

欧洲的伽利略系统也属于导航卫星星座,可能将在最近几年发射升空。

我国的人造地球卫星的发展

截至2001底,我国共研制并发射了48颗不同类型的人造地球卫星。不同卫星又组成各种不同的空间(卫星)应用系统,已初步形成了3个卫星系列——实践号科学实验卫星系列、东方红通信广播卫星系列、对地观测卫星系列。另外,北斗星导航卫星系列正在形成。

实践号科学实验卫星

科学实验卫星是用于科学探测和技术试验的卫星,主要利用在实际太空环境下考验卫星技术中的新方案原理、新技术和新仪器设备,以便为后续的实用卫星做技术储备。中国自1971年3月3日成功发射实践一号卫星以来,已经发射了实践二号、实践二号甲、实践二号乙、实践四号、实践五号。其中实践二号、实践二号甲、实践二号乙是以一箭三星方式发射上天的。

东方红通信卫星和卫星通信系统

1984年我国成功发射了第一颗静止轨道试验通信卫星——东方红二号,使中国成为世界上第五个自行发射地球静止轨道通信卫星的国家。通过东方红二号,一举实现了覆盖全国的信号传输,解决了军用通信和远洋船只的通信问题,彻底改变了边远地区通信落后的状况。

1988年发射的东方红二号甲是我国首次研制成功的实用通信广播卫星,有4个C波段转发器,可以传输4路彩色电视信号和2400路双向电话。通过东方红二号甲卫星,全国有几亿人通过数千个地面接收站收看电视节目,大大改善了我国的通信和广播电视传输条件。

1997年发射的东方红三号是我国新研制的一种中容量广播通信卫星,有24个转发器,工作寿命为8年。这颗卫星改善了我国的国际通信以及西部边远山区的通信状况。目前东方红三号的服务舱部分已设计成公用平台,加上不同的有效载荷即可组成各类功能的卫星。

到目前为止,我国先后成功发射了6颗通信卫星,对国民经济和国防事业发挥了巨大的作用。卫星电视广播已成为人民日常生活的必需品;在远程教育方面,我国目前有5000多个卫星电视教育台,接受远程教育的人数有2000万。

3.人造宇宙飞船

宇宙飞船(英语名为space ship),是一种运送航天员、货物到达太空并安全返回的一次性使用的航天器。它能基本保证航天员在太空短期生活并进行一定的工作。它的运行时间一般是几天到半个月,一般乘2到3名航天员。

世界上第一艘载人飞船是“东方”1号宇宙飞船。它由两个舱组成,上面的是密封载人舱,又称航天员座舱。这是一个直径为2.3米的球体。舱内设有能保障航天员生活的供水、供气的生命保障系统,以及控制飞船姿态的姿态控制系统、测量飞船飞行轨道的信标系统、着陆用的降落伞回收系统和应急救生用的弹射座椅系统。另一个舱是设备舱,它长3.1米,直径为2.58米。设备舱内有使载人舱脱离飞行轨道而返回地面的制动火箭系统,供应电能的电池、储气的气瓶、喷嘴等系统。“东方”1号宇宙飞船总质量约为4700千克。它和运载火箭都是一次性的,只能执行一次任务。

1966年3月17日,“双子星座”8号的宇航员进行了首次太空对接。之后不久,由于飞船损伤系统突然失灵,宇航员们不得不进行紧急着陆处理。宇航员尼尔-A-阿姆斯特朗和戴维-R-斯考特在计划为期3天的飞行使命中的第5圈飞行时,操纵其双子星座封舱与阿根纳号宇宙飞船对接成功。半小时后,双子大发了像星号密封舱开始旋转并失去控制。接着,宇宙飞船上12只小型助推火箭中的一只原因不明地起火。宇航员随即将其飞行器与阿根纳号分离,并成功地在太平洋上降落。质量约为4700千克。

宇宙飞船的分类

至今,人类已先后研究制出三种构型的宇宙飞船,即单舱型、双舱型和三舱型。其中单舱式最为简单,只有宇航员的座舱,美国第1个宇航员格伦就是乘单舱型的“水星号”飞船上天的;双舱型飞船是由座舱和提供动力、电源、氧气和水的服务舱组成,它改善了宇航员的工作和生活环境,世界第1个男女宇航员乘坐的前苏联“东方号”飞船、世界第1个出舱宇航员乘坐的前苏联“上升号”飞船以及美国的“双子星座号”飞船均属于双舱型;最复杂的就是三舱型飞船,它是在双舱型飞船基础上或增加1个轨道舱(卫星或飞船),用于增加活动空间、进行科学实验等,或增加1个登月舱(登月式飞船),用于在月面着陆或离开月面,前苏联/俄罗斯的联盟系列和美国“阿波罗号”飞船是典型的三舱型。联盟系列飞船至今还在使用。

宇宙飞船技术要求

虽然宇宙飞船是最简单的一种载人航天器,但它还是比无人航天器(例如卫星等)复杂得多,以至于到目前仍只有美、俄、中三国能独立进行载人航天活动。

麻雀虽小,五脏俱全。宇宙飞船与返回式卫星有相似之处,但要载人,故增加了许多特设系统,以满足宇航员在太空工作和生活的多种需要。例如,用于空气更新、废水处理和再生、通风、温度和湿度控制等的环境控制和生命保障系统、报话通信系统、仪表和照明系统、航天服、载人机动装置和逃逸生系统等。

当然,掌握航天器再入大气层和安全返回技术也至关重要。尤其是宇宙飞船,除了要使飞船在返回过程中的制动过载限制在人的耐受范围内,还应使其落点精度比返回式卫星要高,从而及时发现和营救宇航员。前苏联载人宇宙飞船就曾因落点精度差,结果使宇航员困在了冰天雪地的森林中差点被冻死。目前,掌握航天器返回技术的国家只有美国、俄罗斯和中国。人上天有三个条件,除要研制出载人航天器外,还必须拥有运载力大、可靠性高的运载工具;应弄清高空环境和飞行环境对人体的影响,并找到有效的防护措施。

天高任船飞。未来的宇宙飞船将朝三个方向发展:有多种功能和用途;返回落点的控制精度提高到百米级的范围以内;返回地面的座舱经适当修理后可重复使用。

4.神舟系列宇宙飞船

神舟一号

发射时间:1999年11月20日6时30分7秒

发射火箭:新型长征二号F捆绑式火箭,这次发射,是长征系列运载火箭的第59次飞行,也是最近3年连续17次获得成功。

飞船进入轨道所需飞行时间:火箭起飞约10分钟,飞船与火箭分离,进入预定轨道。

返回时间:1999年11月21日3时41分

发射地点:酒泉卫星发射中心

着陆地点:内蒙古自治区中部地区

飞行时间/圈数:21小时11分/14圈

搭载物品:一是旗类,中华人民共和国国旗、澳门特别行政区区旗、奥运会会旗等;二是各种邮票及纪念封;三是各10克左右的青椒、西瓜、玉米、大麦等农作物种子,此外还有甘草、板蓝根等中药材。

技术应用:首次采用了在技术厂房对飞船、火箭联合体垂直总装与测试,整体垂直运输至发射场,进行远距离测试发射控制的新模式。我国在原有的航天测控网基础上新建的符合国际标准体制的陆海基航天测控网,也在这次发射试验中首次投入使用。飞船在轨运行期间,地面测控系统和分布于公海的4艘“远望号”测量船对其进行了跟踪与测控,成功进行了一系列科学试验。

评论反应:标志着中国航天事业迈出重要步伐,对突破载人航天技术具有重要意义,是中国航天史上的重要里程碑。

神舟二号

发射时间:2001年1月10日1时0分3秒

发射火箭:新型长征二号F捆绑式火箭,此次发射是长征系列运载火箭第六十五次飞行,也是继一九九六年十月以来中国航天发射连续第二十三次获得成功。

飞船进入轨道所需飞行时间:飞船起飞十三分钟后,进入预定轨道

返回时间:2001年1月16日晚上7时22分

发射地点:酒泉卫星发射中心

着陆地点:内蒙古自治区中部地区

飞行时间/圈数:6天零18小时/108圈

试验项目:我国第一艘正样无人飞船。飞船由轨道舱、返回舱和推进舱三个舱段组成。与“神舟”一号试验飞船相比,“神舟”二号飞船的系统结构有了新的扩展,技术性能有了新的提高,飞船技术状态与载人飞船基本一致。据介绍,我国首次在飞船上进行了微重力环境下空间生命科学、空间材料、空间天文和物理等领域的实验,其中包括:进行半导体光电子材料、氧化物晶体、金属合金等多种材料的晶体生长;进行了蛋白质和其他生物大分子的空间晶体生长;开展了植物、动物、水生生物、微生物及离体细胞和细胞组织的空间环境效应实验等。

评论反应:此次航天飞船发射是中国载人航天工程的第二次飞行试验,标志着中国载人航天事业取得了新的进展,向实现载人航天飞行迈出了可喜的一步。

神舟三号

发射时间:2002年3月25日22时15分

发射火箭:新型长征二号F捆绑式火箭,这次发射是长征系列运载火箭第66次飞行,自1996年10月以来,我国运载火箭发射已经连续24次获得成功。

飞船进入轨道所需飞行时间:火箭点火升空10分钟后,飞船成功进入预定轨道。

返回时间:2002年4月1日

发射地点:酒泉卫星发射中心

着陆地点:内蒙古自治区中部地区

飞行时间/圈数:6天零18小时/108圈

搭载物品:处于休眠状态的乌鸡蛋;进行空间试验的有效载荷公用设备十项,四十四件之多,包括:卷云探测仪、中分辨率成像光谱仪、地球辐射收支仪、太阳紫外线光谱监视仪器、太阳常数监测器、大气密度探测器、大气成分探测器、飞船轨道舱窗口组件、细胞生物反应器、多任务位空间晶体生长炉、空间蛋白质结晶装置、固体径迹探测器、微重力测量仪、有效载荷公用设备。据介绍,微重力测量仪、返回舱有效载荷公用设备是第三次参加飞船试验;空间蛋白质结晶装置、多任务位空间晶体生长炉和轨道舱有效载荷公用设备是第二次参加飞船试验;其余设备均是首次在太空作试验。

试验项目:“神舟”三号是一艘正样无人飞船,飞船技术状态与载人状态完全一致。这次发射试验,运载火箭、飞船和测控发射系统进一步完善,提高了载人航天的安全性和可靠性。飞船上装有人体代谢模拟装置、拟人生理信号设备以及形体假人,能够定量模拟航天员在太空中的重要生理活动参数。这次发射,逃逸救生系统也进行了工作。这个系统是在应急情况下确保航天员安全的主要措施。飞船拟人载荷提供的生理信号和代谢指标正常,验证了与载人航天直接相关的座舱内环境控制和生命保障系统。

神舟四号

发射时间:2002年12月30日0时40分

发射火箭:新型长征二号F捆绑式火箭,此次是长征系列运载火箭的第69次飞行,也是自1996年10月以来,我国航天发射连续第27次获得成功。

飞船进入轨道所需飞行时间:火箭点火升空十几分钟后,飞船成功进入预定轨道

返回时间:2003年1月5日19时16分

发射地点:酒泉卫星发射中心

着陆地点:内蒙古自治区中部地区

飞行时间/圈数:6天零18小时/108圈

搭载物品:除了大气成分探测器等19件设备已经参加过此前的飞行试验外,还有一面北京航空航天大学校旗,和其他的空间细胞电融合仪等33件科研设备都将是首次“上天”。一场筹备了10年之久的两对“细胞太空婚礼”也将在飞船上举行,一对动物细胞“新人”是B淋巴细胞和骨髓瘤细胞,另一对是植物细胞“新人”———黄花烟草原生质体和革新一号烟草原生质体。专家介绍说,在微重力条件下,细胞在融合液中的重力沉降现象将消失,更有利于细胞间进行配对与融合这些“亲热举动”,此项研究将为空间制药探索新方法。

神舟五号

发射时间:2003年10月15日9时整

发射火箭:新型长征二号F捆绑式火箭,此次是长征系列运载火箭第71次飞行,也是继1996年10月以来,我国航天发射连续第29次获得成功。

飞船进入轨道所需飞行时间:9时10分,船箭分离,“神舟”五号载人飞船准确进入预定轨道。

返回时间:2003年10月16日6时28分

发射地点:酒泉卫星发射中心

着陆地点:内蒙古中部阿木古朗草原地区

飞行时间/圈数:21小时/14圈

搭载物品:“神舟”五号载人飞船返回舱内搭载有一面具有特殊意义的中国国旗、一面北京2008年奥运会会徽旗、一面联合国国旗、人民币主币票样、中国首次载人航天飞行纪念邮票、中国载人航天工程纪念封和来自祖国宝岛台湾的农作物种子等。

试验项目:神舟5号将尽量减少机舱内的实验项目及仪器,以腾出更多空间来供航天员活动并执行科学观察任务,可以说这一次的任务主要是考察航天员在太空环境中的适应性。

新技术应用:首次增加了故障自动检测系统和逃逸系统。其中设定了几百种故障模式,一旦发生危险立即自动报警。即使在飞船升空一段时间之后,也能通过逃逸火箭而脱离险境。

备注:中国飞天第一人杨利伟就是乘“神舟”五号载人飞船成功飞行的。

神舟六号

发射时间:2005年10月12日9时0分0秒

发射火箭:神箭--长征二号F运载火箭

飞船进入轨道所需飞行时间:584秒

返回时间:10月17日凌晨4时32分

发射地点:酒泉卫星发射中心

着陆地点:四子王草原秋韵

飞行时间/圈数:115小时32分钟/飞行77圈

搭载物品:共有8类64种搭载物品,其中包括香港金利来、查氏集团等知名企业标识,搭载的生物菌种、植物组培苗和作物、植物、花卉种子则用于太空育种实验。在开舱仪式现场,6位特殊的“乘客”有机会精彩亮相,它们分别是极地考察时使用过的中国国旗、国际奥委会会旗五环旗、上海世博会会旗、《申报》百年纪念特刊、书画作品《六骏图》和10幅少先队员太空画作品。神舟六号返回舱搭载的物品还有“我给‘神舟’六号航天员写封信征文活动”特等奖作文、共和国元帅特种邮票和神舟六号个性化邮票等邮品以及书画名家的作品等。

技术应用:飞船的种类非常多,但最常用的是卫星式载人飞船。这种飞船像卫星一样在离地面几百公里的近地轨道上飞行,飞行高度大约为300公里。飞船有单舱式、双舱式和三舱式,目前国际上成熟航天国家的飞船均是三舱式,这次神舟六号就是三舱式飞船,说明中国航天技术已经初步达到国际水平。神舟六号飞船有以下特点:首先是起点很高,飞船具有承载3名航天员的能力;其次是一船多用,航天员返回后,轨道仓可以在无人值守的状态下,作为卫星继续利用半年,甚至可以在今后进行交会对接实验;第三是返回舱的直径大,俄罗斯的直径是2.2米,我国的是2.5米。最后是飞船返回,非常安全,这方面已经进行过全面的测试。总体来看,神舟六号飞船的技术进步是巨大的。技术进步主要反映在:首先是新材料领域,据悉近年来中国在新材料领域所取得的进步上,有2000多种是来自航天领域;其次是电信领域,这方面有硬件设备的进步,也有软件领域的进步,比如编码技术就确保了话音质量和图像的清晰度;第三是图像技术,这些技术可以用于军事领域,也可以用于民用领域;第四是特种食品,航天员的食品研制非常复杂;第五是特种纺织材料,航天服是一个系统,更是高科技的结晶;第六是电子控制系统的进步,飞船是涉及各种复杂子系统的复杂系统,所有系统均需要有电子控制系统进行控制;第七是生物医学体系的进步,载人航天与无人航天有本质上的差异,系统复杂性和可靠性大为不同,神舟六号的成功,表明中国的相关生物医学已经有了巨大的进步。

神舟六号飞船仍为推进舱、返回舱、轨道舱的三舱结构,整船外形和结构与原来相同,重量基本保持在8吨左右。飞船入轨后先是在近地点200公里,远地点350公里的椭圆轨道上运行5圈,然后变轨到距地面343公里的圆形轨道,绕地球飞行一圈需要90分钟,飞行轨迹投射到地面上呈不断向东推移的正弦曲线。轨道特性与神舟五号相同。

由于此次飞行没有交会对接任务,神舟六号取消了用于这项功能的附加段,另外,飞船上新增加了40余台设备和6个软件,使飞船的设备达到600余台,软件82个,元器件10万余件。

备注:执行任务的宇航员费俊龙聂海胜。

神舟七号

发射时间:2008年9月25日21时10分04秒988毫秒

发射火箭:长征二号F型火箭,这是长征系列运载火箭的第109次飞行

飞船进入轨道所需飞行时间:9分39秒

返回时间:9月28日17时37分

发射地点:酒泉卫星发射中心

着陆地点:内蒙古四子王旗

飞行时间/圈数:2天20小时27分钟/45圈

搭载物品:神舟七号首次携带了中药上天。国家一级保护树种珙桐和国家二级保护树种鹅掌楸的种子各100克。搭载物中首次历史性地出现陶瓷制品。一批深圳太空植物的种子,这些种子包括蝴蝶兰、瓜叶菊、球根海棠、灰毛豆、类芦和结缕草等品种。伴飞卫星,五星红旗,特制太空笔。

试验项目:实施我国航天员首次空间出舱活动,突破和掌握出舱活动相关技术,同时开展卫星伴飞、进行“天链一号”卫星数据中继等空间科学和技术试验。飞船运行期间,1名航天员着我国研制的“飞天”舱外航天服出舱进行舱外活动,回收在舱外装载的试验样品装置。

新技术应用:成功突破飞船气闸舱、舱外航天服、航天测控中继卫星、伴飞小卫星等一系列关键技术。神七载人航天应用方面的一项新技术试验———伴随飞行的试验。航天员由舱内活动转向舱外活动,这是载人航天技术的一个重大跨越。为实现出舱活动,必须突破舱外航天服的微机电、航天员出舱活动的地面模拟训练等一系列关键技术,需要完成舱外航天服和飞船气闸舱的研制。这在技术层面上要求很高。火箭系统经过三年多的努力,采用了新技术抑制火箭飞行初期的振动,大大提高了航天员的飞行舒适性,这从三名航天员在飞船发射中招手的细节里得到了证实。在整个出舱活动中,供氧、供电、空气流通、话音支持等一切功能都成功实现,从直播中,可以清晰地听到翟志刚从宇宙发向地面的声音。这充分说明中国已经掌握了舱外航天服的技术。为了这一次的一些新的测控要求,我们国家利用一些新技术研制了一些新的测控雷达和测控装备。采用海上的新技术(新型“远望号”航天测量船的使用)和空中的技术(数据中继卫星的使用),“神七”的测控覆盖率有大幅度的提升。

5.探索宇宙的使者:航天飞机

可重复使用的用运载火箭发射的飞行器,用于进入地球轨道,在地球与轨道航天器之间运送人员和物资,并滑翔降落于地面。虽然航天飞机像常规载人航天器一样垂直发射,但与后者不同的是,它像普通喷气式飞机一样滑翔降落在跑道上。轨道器在设计上可重复使用100次,降低了航天飞行高昂的成本。到20世纪80年代中期共有4架航天飞机服役:“哥伦比亚”号、“挑战者”号、“发现”号和“亚特兰蒂斯”号。

1969年4月,美国宇航局提出建造一种可重复使用的航天运载工具的计划。1972年1月,美国正式把研制航天飞机空间运输系统列入计划,确定了航天飞机的设计方案,即由可回收重复使用的固体火箭助推器,不回收的两个外挂燃料贮箱和可多次使用的轨道器三个部分组成。经过5年时间,1977年2月研制出一架创业号航天飞机轨道器,由波音747飞机驮着进行了机载试验。1977年6月18日,首次载人用飞机背上天空试飞,参加试飞的是宇航员海斯(C·F·Haise)和富勒顿(G·Fullerton)两人。8月12日,载人在飞机上飞行试验圆满完成。又经过4年,第一架载人航天飞机终于出现在太空舞台,这是航天技术发展史上的又一个里程碑。

航天飞机可将卫星和探测器装截于货舱中,在太空中施放,也可由航天员在太空中回收或修理轨道上不能使用的卫星。航天飞机的轨道器可以用作太空实验室,携带专门的研究设备进行各种科学实验。

航天飞机是一种为穿越大气层和太空的界线(高度100公里的关门线)而设计的火箭动力飞机。它是一种有翼、可重复使用的航天器,由辅助的运载火箭发射脱离大气层,作为往返于地球与外层空间的交通工具,航天飞机结合了飞机与航天器的性质,像有翅膀的太空船,外形像飞机。航天飞机的翼在回到地球时提供空气煞车作用,以及在降跑道时提供升力。航天飞机升入太空时跟其他单次使用的载具一样,是用火箭动力垂直升入。因为机翼的关系,航天飞机的酬载比例较低。设计者希望以重复使用性来弥补这个缺点。

虽然世界上有许多国家都陆续进行过航天飞机的开发,但只有美国与前苏联实际成功发射并回收过这种交通工具。但由于苏联瓦解,相关的设备由哈萨克接收后,受限于没有足够经费维持运作使得整个太空计划停摆,因此全世界仅有美国的航天飞机机队可以实际使用并执行任务。

航天飞机的组成部分

航天飞机是一种垂直起飞、水平降落的载人航天器,它以火箭发动机为动力发射到太空,能在轨道上运行,且可以往返于地球表面和近地轨道之间,可部分重复使用的航天器。它由轨道器、固体燃料助推火箭和外储箱三大部分组成。

外部燃料箱

外表为铁锈颜色,主要由前部液氧箱、后部液氢箱以及连接前后两箱的箱间段组成。外部燃料箱负责为航天飞机的3台主发动机提供燃料。外部燃料箱是航天飞机三大模块中唯一不能重复使用的部分,发射后约8.5分钟,燃料耗尽,外部燃料箱便被坠入到大洋中。

一对固体火箭助推器

这对火箭助推器中装有助推燃料,平行安装在外部燃料箱的两侧,为航天飞机垂直起飞和飞出大气层进入轨道,提供额外推力。在发射后的头两分钟内,与航天飞机的主发动机一同工作,到达一定高度后,与航天飞机分离,前锥段里降落伞系统启动,使其降落在大西洋上,可回收重复使用。

轨道器

即航天飞机本身,它是整个系统的核心部分。轨道器是整个系统中惟一可以载人的、真正在地球轨道上飞行的部件,它很像一架大型的三角翼飞机。它的全长37.24m,起落架放下时高17.27m;三角形后掠机翼的最大翼展23.97m;不带有效载荷时质量68t,飞行结束后,携带有效载荷着陆的轨道器质量可达87t。它所经历的飞行过程及其环境比现代飞机要恶劣得多,它既要有适于在大气层中作高超音速、超音速、亚音速和水平着陆的气动外形,又要有承受再人大气层时高温气动加热的防热系统。因此,它是整个航天飞机系统中,设计最困难,结构最复杂,遇到的问题最多的部分。

轨道器由前、中、尾三段机身组成。前段结构可分为头锥和乘员舱两部分,头锥处于航天飞机的最前端,具有良好的气动外形和防热系统,前段的核心部分是处于正常气压下的乘员舱。这个乘员舱又可分为三层:最上层是驾驶台,有4个座位,中层是生活舱,下层是仪器设备舱。乘员舱为航天员提供宽敞的空间,航天员在舱内可穿普通地面服装工作和生活。一般情况下舱内可容纳4~7人,紧急情况下也可容纳10人。

航天飞机的中段主要是有效载荷舱。这是一个长18m,直径4.5m,容积300m3的大型货舱,一次可携带质量达29t多的有效载荷,舱内可以装载各种卫星、空间实验室、大型天文望远镜和各种深空探测器等。为了在轨道上施放所携带的有效载荷或回收轨道上运行的有效载荷,舱内设有一或二个自动操作的遥控机械手和电视装置。机械手是一根很细的长杆,在地面上它几乎不能承受自身的重量,但是在失重条件下的宇宙空间,却可以迅速而灵活地载卸10t多的有效载荷。航天飞机中段机身除了提供货舱结构之外,也是前、后段机身的承载结构。

航天飞机的后段比较复杂,主要装有三台主发动机,尾段还装有两台轨道机动发动机和反作用控制系统。在主发动机熄火后,轨道机动发动机为航天飞机提供进入轨道、进行变轨机动和对接机动飞行以及返回时脱离轨道所需要的推力。反作用控制系统用来保持航天飞机的飞行稳定和姿态变换。除了动力装置系统之外,尾段还有升降副翼、襟翼、垂直尾翼、方向舵和减速板等气动控制部件。

航天飞机是如何诞生的

用运载火箭发射载人飞船,都是一次性使用,很不经济。如何让它们重复使用,是必然的逻辑发展。

美国在顺利执行“阿波罗”载人登月计划的鼓舞下,也满腔热情地投入可重复使用的航天运输系统的研制,作为“天空实验室”航天站的往返运输系统,并以此取名为“Space Shuttle”,即“太空穿梭机”。我国著名科学家钱学森根据“航天”的定义,将其转译为“航天飞机”。

航天飞机的设想是美好的,但实施起来却非常困难。美国人设想了许多方案,都难以达到预想的完美程度。要从地面起飞,最好是像飞机那样充分利用空气动力,这样就要有机翼,就要水平起飞。所以最早设想的一种方案,像是一架笨重的飞机,比B-52巨型轰炸机还大。因为它必须有足够的推进剂,使其加速到宇宙速度,巨大的燃料就把它的身体撑起来了。让这样的庞然大物飞起来,并进入太空轨道,技术难度太大。

后来推出一种方案,将一架庞大的飞机分成两架,让大的驮载小的。大飞机在地球大气层中飞行,它可以只带燃料,而利用空气中的氧气燃烧,这样它就可以大大瘦身了。在达到一定速度后,小飞机启动火箭发动机进入轨道,所以被称为“轨道器”。不过,这种轨道器的运载能力有限。

1971年,美国洛克威尔公司推出一种新的两级方案,将轨道器加长加大了。这种方案实施起来技术难度很大,成本也很高。1972年,美国格鲁曼公司提出一种新方案,放弃了全部重复使用的想法,将质量最大的、起飞时使用的推进剂装在一个外挂燃料箱中,用完后扔掉。同时,再设两枚固体火箭帮助起飞,完成任务后分离。当然,这样一来就必须垂直发射了。这个方案成本较低,经完善后就是现在的航天飞机。

虽然是部分重复使用,但研制起来技术难度仍然很大。直到“天空实验室”1979年7月坠毁时,也没有等到航天飞机的出现。1981年4月12日,航天飞机才第一次轨道试飞成功。

航天飞机与普通飞机的区别

由于航天飞机是垂直起飞、水平着陆的,所以它在发射时与普通飞机完全不同,而在返回时则基本类似,但一般要借助降落伞减速。虽然航天飞机在外形和返回的方式上与一般的航空飞机很相似,但它们之间有许多不同,前者要复杂得多。例如,航天飞机在大气层外飞行,使用火箭发动机,所以氧化剂也要自身携带;航天飞机返回时要再入大气层,因而防热技术非常复杂。

航天飞机是第一次把航天与航空技术高度有机结合起来的创举。它由起飞到入轨的上升段运用了火箭垂直起飞技术,在太空轨道飞行段运用了航天器技术,在再入大气层的滑翔飞行和水平着陆段运用了航空飞机技术。

航天记录

美国航天飞机创造了许多航天新纪录。航天飞机首航指令长约翰·杨6次飞上太空,是当时世界上参加航天次数最多的宇航员。1983年6月18日女宇航员莎丽·赖德(SallyK·Ride)乘挑战者号上天飞行,名列美国妇女航天的榜首。1983年8月30日,挑战者号把美国第一个黑人宇航员布鲁福德(GuionS·Bluford)送上太空飞行。1984年2月3日乘挑战者号上天的麦坎德利斯(B·McCandless),成为世界上第一位不系安全带到太空行走的宇航员。1984年4月6日挑战者号上天后,宇航员首次抓获和修理轨道上的卫星成功。1984年10月5日参加挑战者号飞行的莎丽文(KathrynD·Sullivan)成为美国第一位到太空行走的女宇航员。1985年1月24日发现号升空,首次执行秘密的军事任务。1985年4月29日,第一位华裔宇航员王赣骏(Tayler Wang)乘挑战者号上天参加科学实验活动。1985年11月26日,亚特兰蒂斯载宇航员上天第一次进行搭载空间站试验。1992年5月7日奋进号首次飞行,宇航员在太空第一次用手工操作抢救回收卫星成功。7月31日亚特兰蒂斯号上天,首次进行绳系卫星发电试验。9月12日奋进号将第一位黑人女宇航员,第一位日本记者和第一对宇航员夫妇载入太空飞行。

最后的飞行

2010年初,NASA正式决定将日渐老化的航天飞机全部退役。按计划在2010年秋天退役之前它们仅剩5次飞行任务。也就是说,除非NASA需要多几个月的时间完成剩余的任务,或者奥巴马总统选择延长航天飞机项目的寿命来减小美国载人航天飞行能力的缝隙,否则航天飞机将在2010年秋季停飞。

2010年2月,“奋进号”航天飞机升空,拉开了2010年航天飞机退役飞行的序幕,为空间站安装了“宁静”号节点舱和一个便于宇航员对地球、其他天体及航天器进行全景观测的观测台。

3月,“发现”号正矗立在肯尼迪航天中心的39A发射架上,预定于4月5日发射。在此次太空任务中,这艘航天飞机将搭载一个多功能后勤舱进入空间站。这个后勤舱基本上就是一个大型储藏室,里面装的是用于空间站实验室的科学研究架。按照计划,宇航员将在此次任务中进行3次太空行走,完成更换氨水箱,取回空间站外部的日本实验舱以及更换陀螺仪等工作。

5月,“亚特兰蒂斯”号航天飞机将执行一项为期12天的任务,向空间站运送集成货舱以及俄罗斯制造的迷你研究舱。迷你研究舱将安装在空间站曙光舱底部端口。此外,迷你研究舱也将搭载美国货物。

此次任务中,宇航员将进行3次太空行走,在空间站外部安装备用零部件,其中包括六块备用电池、一个用于Ku波段天线的桁架总成以及为加拿大机械臂准备的零部件。散热器、气闸、欧洲机械臂、俄罗斯多功能实验舱等部件也将搭乘“亚特兰蒂斯”号进入空间站。

7月,“奋进”号航天飞机将重返太空,执行一项为期10天的任务,向空间站运送一系列备用零件,其中包括两个S波段通信天线、一个高压气罐、为加拿大机械臂准备的额外零部件以及微流星体碎片防护盾。由于在空间站周围或附近飞行的太空垃圾数量增多,安装这种防护盾显得非常重要。

9月,“发现”号将执行航天飞机退役前的最后一次飞行任务,为期9天。此次任务中,“发现”号将向空间站运送4号快速后勤运输装置以及其它零部件。这将是航天飞机的第134次飞行同时也是第36次飞往空间站的任务。后勤运输装置有助于提高空间站的货物储存空间。

美国航天飞机首次飞行

1981年4月12日,在卡纳维拉尔角肯尼迪航天中心聚集着上百万人,参观第一架航天飞机哥伦比亚号航天飞机发射。宇航员翰·杨(JohnW·Young)和克里平(Robert L·Crippen)揭开了航天史上新的一页。

这架航天飞机总长约56米,翼展约24米,起飞重量约2040吨,起飞总推力达2800吨,最大有效载荷29.5吨。它的核心部分轨道器长37.2米,大体上与一架DC—9客机的大小相仿。每次飞行最多可载8名宇航员,飞行时间7至30天,轨道器可重复使用100次。航天飞机集火箭,卫星和飞机的技术特点于一身,能像火箭那样垂直发射进入空间轨道,又能像卫星那样在太空轨道飞行,还能像飞机那样再入大气层滑翔着陆,是一种新型的多功能航天飞行器。

从1981年至1993年底,美国一共有5架航天飞机进行了59次飞行,其中哥伦比亚号航天飞机15次,挑战者号10次,发现号17次,亚特兰蒂斯号12次,奋进号5次。每次载宇航员2至8名,飞行时间从2天到14天。在12年中,已有301人次参加航天飞机飞行,其中包括18名女宇航员。航天飞机的59次飞行中,在太空施放卫星50多颗,载2座空间站到太空轨道,发射了3个宇宙探测器,1个空间望远镜和1个γ射线探测器,进行了卫星空间回收和空间修理,开展了一系列科学实验活动,取得了丰硕的探测实验成果。

航天飞机除可在天地间运载人员和货物之外,凭着它本身的容积大、可多人乘载和有效载荷量大的特点,还能在太空进行大量的科学实验和空间研究工作。它可以把人造卫星从地面带到太空去释放,或把在太空失效的或毁坏的无人航天器,如低轨道卫星等人造天体修好,再投入使用,甚至可以把欧空局研制的“空间实验室”装进舱内,进行各项科研工作。

苏俄航天飞机

1988年11月16日莫斯科时间清晨6时整,前苏联的暴风雪号航天飞机从拜科努尔航天中心首次发射升空,47分钟后进入距地面250千米的圆形轨道。它绕地球飞行两圈,在太空遨游3小时后,按预定计划于9时25分安全返航,准确降落在离发射地点12千米外的混凝土跑道上,完成了一次无人驾驶的试验飞行。

暴风雪号航天飞机大小与普通大型客机相差无几,外形同美国航天飞机极其相仿,机翼呈三角形。机长36米,高16米,翼展24米,机身直径5.6米,起飞重量105吨,返回后着陆重量为82吨。它有一个长18.3米,直径4.7米的大型货舱,能将30吨货物送上近地轨道,将20吨货物运回地面。头部有一容积70立方米的乘员座舱,可乘10人。科学家们认为,这次完全靠地面控制中心遥控机上的电脑系统,在无人驾驶的条件下自动返航并准确降落在狭长跑道上,其难度比1981年美国航天飞机有人驾驶试飞大得多。首先,暴风雪号的主发动机不是装在航天飞机尾部,而是安装在能源号火箭上,这样就大大减轻了航天飞机的入轨重量,同时腾出位置安装小型机动飞行发动机和减速制动伞。其次,暴风雪号着陆时,可用尾部的小型发动机做有动力的机动飞行,安全准确地降落在狭长跑道上,万一着陆失败,还可以将航天飞机升起来进行第二次着陆,从而提高了可靠性。而美国航天飞机靠无动力滑翔着陆只能一次成功。第三,暴风雪号能象普通飞机那样借助副翼,操纵舵和空气制动器来控制在大气层内滑行,还准备有减速制动伞,在降落滑跑过程中当速度减慢到50千米/小时自动弹出,使航天飞机在较短距离内停下来。暴风雪号首航成功,标志着前苏联航天活动跨入一个新的阶段,为建立更加完善的天地往返运输系统辅平了道路。原计划一年后进行载人飞行,但由于机上系统的安全可靠尚未得到充分保证,加之其后政治和经济等方面的原因,载人飞行的时间便推迟了。

其他国家的航天飞机计划

在其他国家也存在着航天飞机的计划,英国曾经设计一种航天飞机,其外形很独特,外形和一枚运载火箭一样大小,英国人取名为“霍托”,是无人驾驶的航天飞机,用于运输。它既能垂直发射,也能使用当时和法国联合研制的协和超音速飞机的跑道起飞。而另外法国人也构想过一种小型的航天飞机其外形和美国的航天飞机外形一样只不过外形比美国的航天飞机更小,只有一对小型引擎,由法国研制的“阿尔丽娜”型火箭发射。

挑战者号

1986年1月28日,美国“挑战者”号航天飞机在第10次发射升空后,因助推火箭发生事故凌空爆炸,舱内7名宇航员(包括一名女教师)全部遇难。直接造成经济损失12亿美元,航天飞机停飞近3年,成为人类航天史上最严重的一次载人航天事故,使全世界对征服太空的艰巨性有了一个明确的认识。

遇难宇航员为斯科比、史密斯、麦克奈尔、杰维斯、鬼冢(夏威夷出生,日裔)、朱迪恩·雷斯尼克(女)、麦考利芙(女教师)。

美国东部时间当日上午11时39分12秒,美国佛罗里达州卡纳维拉尔角的肯尼迪航空中心10英里上空,在“轰”的一声巨响之后,“挑战者”号航天飞机凌空爆炸。美国全部航天飞机飞行因而暂停了3年,“星球大战”计划也遭受严重挫折。

美国哥伦比亚号

美国当地时间2003年2月1日,载有七名宇航员的美国哥伦比亚号航天飞机在结束了为期16天的太空任务之后,返回地球,但在着陆前发生意外,航天飞机解体坠毁。

美东时间上午九9点(北京时间22:00),也就是在哥伦比亚号着陆前16分钟,该机突然从雷达中消失。电视图像显示,解体的哥伦比亚号在德州的上空划出了数条白色的轨迹。

美国航空航天局并没有立即宣布包括一名以色列宇航员在内的全体船员已经遇难,但是肯尼迪机场现在已经降下半旗。目前在德州地区寻找哥伦比亚号残骸的工作仍在继续,航空航天局已经向民众发出警告,不要接触任何碎片,因为在航天飞机引擎上覆有毒性极强的化学涂料。

哥伦比亚号进行紧急着陆的航空可能性是不存在的,航天局的发言人凯勒-赫尔林向CNN表示:“在当时的情况下,恐怕哥伦比亚号根本没有选择的机会。”

事发之后,布什总统立即结束了戴维营的短暂休假,返回了白宫,密切关注事态的进一步发展。

哥伦比亚号是美国现有的四架航天飞机中服役时间最长的,此次的意外事件使人们回想起了1986年1月28日挑战者号的失事,当时机上七名宇航员全部罹难。

联邦调查局发言人安吉拉-贝尔表示,目前没有直接证据显示此次事件与恐怖分子有关。

哥伦比亚号发生意外时的飞行高度为203,000英尺,时速为12,500英里。

航空航天局的发言人凯瑟琳-沃森向全国公共广播网表示:“目前所有的飞行控制器都在努力寻找能够说明到底发生了什么问题的数据。”但在被问及是否能够有宇航员幸存时沃森流下了眼泪。

此次在哥伦比亚号上遇难的七名宇航员分别是:里克-赫兹本德、威廉-麦克库尔、麦克尔-安德森、大卫-布朗、凯尔帕娜-乔拉、劳里尔-克拉克以及以色列人伊兰-拉蒙。

以色列总理沙龙表示:“此次事件对于两国政府、两国人民以及遇难宇航员的家庭来说都是一个巨大的悲剧。”

“哥伦比亚”号解体后,可能带有有毒物质的碎片散布在得克萨斯州东部约190公里长的狭长地带。一条160公里长的烟雾和金属微粒带还悬在该州和路易斯安那州广漠土地的上空。坠落的碎片也击穿德克萨斯州多间房屋屋顶,并且引起居民区火灾,至少27人受伤。

按原计划,哥伦比亚号航天飞机是在美国东部时间2003年2月1日9时16分(北京时间2月1日22时16分)着陆。但是在9时左右,地面控制中心突然与航天飞机失去联系。同时,德克萨斯北部的居民向警方称,他们听到一声音巨大的爆炸声。当地进行直播的美国当地电视上也出现了一道亮光,紧随其后的是浓浓的黑烟划破碧空万里。

有关人士报道:失去联络的航天飞机哥伦比亚号,大量的残骸散落在达拉斯、沃斯堡(达福)地区,并延伸到东德州,甚至残骸散落到东边的路易斯安那州。但截至目前为止,尚未传出有人、车或房舍遭残骸砸伤、损毁的消息。

由于事先预知哥伦比亚航天飞机将在上午八时飞过北德州上空,因此有许多人在周末起个大早,就为了目睹航天飞机的飞越,而居住在布兰诺市(Plano)的柯林汉夫妇便是其中之一。据他们指出,他们看到航天飞机从天空的西方飞入视野,后来看到火焰以及航天飞机主体旁有四个物体,原先他们以为航天飞机就是这样,直到看了电视报道才知道出事了。

在艾迪逊市(Addison)宠物医院工作的林维尔(Chris Linville)表示,他正好看到航天飞机起火,似乎是引擎之类的地方出了问题。但究竟是怎么会这样,他完全不了解。

而在航天飞机碎片散落最集中的纳可杜契斯市(Nacogdoches),有许多的航天飞机机件与金属片散落在整个市区,据该市警察局发言人稣维尔表示,纳可道奇斯市已成立了紧急运作中心,派人处理这些残骸。他呼吁民众,千万不要碰触这些可能含有剧毒的残骸。

哥伦比亚号是美国最老的航天飞机,已进行飞行任务二十八次,原预订美国东岸时间上午九时十六分(德州为八时十六分),降落在佛罗里达州卡纳维尔角,在降落前约十五分钟与太空总署最后一次通讯后,即失去联络。机上有七名乘员,其中四人为第一次飞行,包括一名首次参与航天飞机飞行任务的以色列航天员。

哥伦比亚号航天飞机失去联络时的飞行高度是二十万七千英尺,飞行速度十八倍音速,因此若在高处解体,航天飞机碎片势必分散非常广阔。

有关人士称哥伦比亚号失事原因是:外挂燃料箱隔热泡沫脱落,尽管这块泡沫仅仅0.77千克,还是在哥伦比亚左翼防热瓦上砸了个小洞,哥伦比亚号带着这个洞在太空飞行了16天后,在降落时与大气层摩擦的巨大热量透过这个洞进入机体,引起爆炸。

哥伦比亚号是承载科研项目最多的航天飞机,其中还包括中国学生设计的一个项目:蚕在太空中吐丝结茧。

历史瞬间

1981年4月12日,第一架实用航天飞机“哥伦比亚”号首次升空,两天的飞行主要验证其安全发射和降落的能力,这开创了人类航天的一个新时代。

1983年8月30日,“挑战者”号航天飞机首次实现黑夜发射,6天后又在黑夜降落,宇航员队伍中的布拉福德是第一位“登天”的黑人。

1984年2月3日,“挑战者”号再次发射,在7天的飞行任务中宇航员首次进行了不系带的太空行走,此后宇航员“太空漫步”成为航天飞机任务中经常出现的画面。

1984年10月5日,又是“挑战者”号,首次搭载了7名宇航员升空,其中女宇航员凯瑟琳·苏利文成为第一位太空行走的美国女性,从此航天飞机经常运送7名宇航员。

1986年1月28日,“挑战者”号在升空73秒后爆炸,7名宇航员全部罹难,此后美宇航局暂停了航天飞机发射任务。

1988年9月28日,“发现”号在航天飞机任务中止32个月后升空,5名宇航员释放了一颗卫星,并完成了几项科学实验,这标志着航天飞机项目再次走上正轨。

1990年4月24日,“发现”号航天飞机将“哈勃”太空望远镜送上轨道,人类有了观察遥远宇宙的“火眼金睛”。

1992年9月12日,“奋进”号升空,这架航天飞机成为宇航员马克·李和简·戴维斯的“婚礼特快”,这两位宇航员是第一对在太空缔结良缘的夫妇。

1995年6月27日,“亚特兰蒂斯”号发射,它实现了航天飞机和俄罗斯的“和平”号轨道空间站首次对接,美国和俄罗斯宇航员在外太空互相“串门”,新闻评论说“冷战”已在地球之外结束。

1996年11月19日,“哥伦比亚”号发射,共飞423小时53分钟,创造了航天飞机停留外太空时间最长的记录。

1998年10月29日,“发现”号搭载着77岁的参议员约翰·格伦起飞。格伦是曾搭乘“水星”飞船升空的美国首名宇航员,这次他又成为最高龄的“太空人”。

1999年7月23日,“哥伦比亚”号发射,这次指挥它的是艾琳·柯林斯,标志着女性首次成为航天飞机的机长。

2003年2月1日,“哥伦比亚”号在返回地面过程中于空中解体,7名宇航员全部罹难。

2005年8月9日,美国“发现”号航天飞机在美国加利福尼亚州的爱德华兹空军基地安全降落,结束了长达14天的太空之旅。这是自“哥伦比亚”号航天飞机失事后,美国航天飞机首次顺利地重返太空,并且平安回家。

2006年17日,发现号航天飞机在佛罗里达州肯尼迪航天中心成功着陆。此次发现号顺利完成国际空间站维修和建设任务,并为国际空间站送去一名宇航员。

2009年,美国东部时间5月11日下午2时左右,美国“阿特兰蒂斯”号航天飞机从佛罗里达州肯尼迪航天中心发射升空,机上7名宇航员将对哈勃太空望远镜进行最后一次维护。美国西部时间24日8时39分,“阿特兰蒂斯”号航天飞机载着7名宇航员安全降落在加利福尼亚州爱德华兹空军基地,圆满完成了对哈勃太空望远镜最后一次维护的飞行任务。

2009年7月15日(北京时间16日6时3分),美国“奋进”号航天飞机从佛罗里达州肯尼迪航天中心成功升空,启程前往国际空间站日本舱安装最后一个组件。

2009年8月,美国东部时间28日23时59分(北京时间29日11时59分),美国“发现”号航天飞机从佛罗里达州肯尼迪航天中心发射升空。“发现”号搭载7名宇航员,从肯尼迪航天中心发射升空前往国际空间站,运送数吨的补给和设备。此前,“发现”号的发射已三次被延迟。25日因为天气状况推迟,随后于26和28日两度推迟,主要原因是装有液体氢的燃料箱阀门出现问题。

2009年9月美国东部时间11日晚间7时47分(北京时间12日上午7时47分)发现号开始点火进行变轨,于当天晚间8时53分(北京时间12日上午8时53分)在爱德华兹空军基地安全着陆。

后续计划

航天飞机退役之后,美国将启用新一代的“战神”火箭和“奥赖恩”载人飞船,承担美国人重返月球等载人飞行任务。

根据美国总统布什2004年提出的“新太空探索计划”,下一代载人航天器“奥赖恩”未来将负责运送美国宇航员往返国际空间站,并肩负宇航员“重返月球”以及登上火星乃至进入更遥远星际空间的重任。

然而,除了资金以外,技术难题也是另一项考验。美国宇航局负责探索项目的副局长理查德·吉尔布里奇说,目前“奥赖恩”在设计方面的最大挑战是如何将其重量控制到最低水平。

再而,美国3架现役航天飞机将在2010年前相继退役,而下一代载人航天器“奥赖恩”的上岗最早也要到2014年,对于中间几年的“断档”期,美国如何应对?这一问题成为美国宇航局将要面对的重大考验。载人航天器“改朝换代”,殊非易事。在航天飞机退役后,美国何时能恢复原有的载人航天实力,目前很难说。

另外,航天飞机时代结束还将带来失业问题。根据美国宇航局本月初发布的一份报告,到2010年航天飞机退役时,美国与载人航天相关的行业将有约一万人失去工作,其中绝大多数是美宇航局的各级承包商的员工。

6.太空驿站:太空站

我们国家提出在地球轨道上建永久的平台有很多的理由,而且通过与其他国家的国际合作可以使我们受益非浅。

空间站提供了一种全新的提高人类生活水平的方式。现在每个人都应该知道在地球轨道上,太空提供了许多非常有用的、在地球上找不到的环境,例如失重、高真空、高温、极冷、极热、未经过滤的太阳光和可以看到地球的全貌和环境,以及用天文望远镜观察不被充满空气、云彩和污染物的大气层所阻挡的宇宙。

这些特殊的环境,可以使我们在那里进行人、动物、植物等的科学研究,得到重大的科技创新。它们也带来了新的医学突破、科技发展、新的工业产品、新的药品和很多其他的有助于我们国家保持领先地位的新的机遇和挑战。当然了,这也使我们的经济、工业、贸易和商业更具竞争优势,也创造了新的工作、知识和财富。

由于空间站可以在太空中停留很长时间,使我们能够长时间的利用这么多的太空资源,而航天飞机在太空中最多只能停留14天。空间站也可以提供更多的电能、更大面积、更多的工具和其他设备、简直就像地面上的一个大型的研究基地,产品发展中心和技术示范中心。在长时间的飞行中,空间站也可以成为人类更好地探索外太空的太空发射场、跳板和以23,000英尺/秒速度移动的发射平台。

太空站又称为“空间站”、“轨道站”或“航天站”,是可供多名宇航员巡航、长期工作和居住的载人航天器。在太空站运行期间,宇航员的替换和物资设备的补充可以由载人飞船或航天飞机运送,物资设备也可由无人航天器运送。1971年前苏联发射了世界上第一个太空站———“礼炮”1号,此后到1983年又发射了“礼炮”2—7号。1986年前苏联又发射了更大的太空站“和平”号,目前仍在轨运行。美国1973年利用“阿波罗”登月计划的剩余物资发射了“天空实验室”太空站。

太空站是一种在近地轨道长时间运行,可供多名航天员在其中生活工作和巡访的载人航天器。小型的太空站可一次发射完成,较大型的可分批发射组件,在太空中组装成为整体。在太空站中要有人能够生活的一切设施,不再返回地球。

太空站的结构与组成

其结构特点是体积比较大,在轨道飞行时间较长,有多种功能,能开展的太空科研项目也多而广。太空站的基本组成是以一个载人生活舱为主体,再加上有不同用途的舱段,如工作实验舱、科学仪器舱等。太空站外部必须装有太阳能电池板和对接舱口,以保证站内电能供应和实现与其它航天器的对接。

太空站的特点

太空站的特点之一是经济性。例如,太空站在太空接纳航天员进行实验,可以使载人飞船成为只运送航天员的工具,从而简化了其内部的结构和减轻其在太空飞行时所需要的物质。这样既能降低其工程设计难度,又可减少航天费用。另外,太空站在运行时可载人,也可不载人,只要航天员启动并调试后它可照常进行工作,定时检查,到时就能取得成果。这样能缩短航天员在太空的时间,减少许多消费,当太空站发生故障时可以在太空中维修、换件,延长航天器的寿命。增加使用期也能减少航天费用。因为空间站能长期(数个月或数年)的飞行,故保证了太空科研工作的连续性和深入性,这对研究的逐步深化和提高科研质量有重要作用。

太空站的发射历史

到目前为止,全世界已发射了9个太空站。按时间顺序讲,苏联是首先发射载人太空站的国家。其礼炮1号太空站在1971年4月发射,后在太空与联盟号飞船对接成功,有3名航天员进站内生活工作近24天,完成了大量的科学实验项目,但这3名航天员乘联盟11号飞船返回地球过程中,由于座舱漏气减压,不幸全部遇难。礼炮2号发射到太空后由于自行解体而失败。苏联发射的礼炮3、4、5号小型太空站均获成功,航天员进站内工作,完成多项科学实验。其礼炮6、7号太空站相对大些,也有人称它们为第二代太空站。它们各有两个对接口,可同时与两艘飞船对接,航天员在站上先后创造过210天和237天长期生活记录,还创造了首位女航天员出舱作业的记录。

太空站在科学研究、国民经济和军事上都有重大价值。它的用途包括天文观测、地球资源勘测、医学和生物学研究、新工艺开发、大地测量、军事侦察和技术试验等。太空站还可以作为人类造访火星等其它行星的跳板,并试验载人行星际探索技术。

太空站分为单一式和组合式两种。单一式太空站由运载火箭或航天飞机直接发射入轨;组合式太空站由若干枚火箭或航天飞机多次发射并组装而成。太空站通常由对接舱、气闸舱、轨道舱、生活舱、服务舱、专用设备舱和太阳电池翼等部分组成。对接舱一般有数个对接口,可同时停靠多艘载人飞船或其它飞行器。气闸舱是航天员在轨道上出入太空站的通道。轨道舱是宇航员在轨道上的主要工作场所。生活舱是供宇航员进餐、睡眠和休息的地方。站内一般设有卧室、餐厅和卫生间等。服务舱内一般装有推进系统、气源和电源等设备,为整个太空站服务。专用设备舱是根据飞行任务而设置的安装专用仪器的舱段,也可以是不密封的构架,用以安装暴露于空间的探测雷达和天文望远镜等仪器设备。太阳电池翼通常装在站体外侧,为站上各仪器设备提供电源。

2001年11月20日,俄罗斯的一枚“质子”号运载火箭在哈萨克斯坦境内的拜科努尔航天发射场起飞成功地发射了“国际太空站”的第一个组件———“曙光”号舱。

“国际太空站”计划是1984年由美国总统里根提出的,原名“自由”号,由美国牵头,现有16个国家参与建造,定于2004年投入使用。继“曙光”号舱之后,美国去年12月4日又发射了“节点”1号舱,并同“曙光”号对接到一起。站上的各种设备将由俄罗斯火箭和美国航天飞机分45次运送到轨道上。

“国际太空站”由重新设计的“自由”号和俄原准备建造的“和平”2号两部分组成,两部分的交接处就是已率先发射的“曙光”号舱。全站建成后重426吨,跨度为108.5米88.4米,将运行在高约400公里、与地球赤道呈51.6度夹角的一条轨道上。该站初期可乘3人,后期可增至6人。它的规模大大超过了“和平”号。

各国的太空站

美国天空实验室

美国在1973年5月14日发射成功一座叫天空实验室的空间站,它在435千米高的近圆空间轨道上运行,先后接待3批9名宇航员到站上工作。这9名宇航员到站上工作。这9名宇航员在站上分别居留28天,59天和84天。天空实验室全长36米,最大直径6.7米,总重77.5吨,由轨道舱,过渡舱和对接舱组成,可提供360立方米的工作场所。1973年5月25日,7月28日和11月16日,先后由阿波罗号飞船把宇航员送上空间站工作。在载入飞行期间,宇航员用58种科学仪器进行了270多项生物医学,空间物理,天文观测,资源勘探和工艺技术等试验,拍摄了大量的太阳活动照片和地球表面照片,研究了人在空间活动的各种现象。1974年2月第三批宇航员离开太空返回地面后,天空实验室便被封闭停用,直到1979年7月12日在南印度洋上空坠入大气层烧毁。它在太空运行2249天,航程达14亿多千米。

前苏联礼炮号太空站

1971年4月19日,前苏联发射了第一座太空站礼炮1号,从些载入太空飞行进入一个新的阶段。礼炮1号太空站由轨道舱,服务舱和对接舱组成,呈不规则的圆柱形,总长约12.5米,最大直径4米,总重约18.5吨。它在约200多千米高的轨道上运行,站上装有各种试验设备,照相摄影设备和科学实验设备。与联盟号载入飞般对接组成居住舱,容积100立方米,可住6名宇航员。礼炮1号空间站在太空运行6个月,相继与联盟10号,联盟11号两艘飞船对接组成轨道联合体,每艘飞船各载3名宇航员,共在空间站上停留26天。礼炮1号完成使命后于同年10月11日在太平洋上空坠毁。

前苏联一共发射了7座礼炮号空间站,前5座只有一个对接口,即只能与一艘飞船对接飞行。因站上携带的食品,氧气,燃料等储备有限,在太空寿命都不很长。经过改进的礼炮6号和7号空间站,增加了一个对接口,除接待联盟号载入飞船外,还可与进步号货运飞船对接,用以补给宇航员生活所需的名种用品。1977年9月29日发射上天的礼炮6号空间站,在太空飞行近5年,共接待18艘联盟号和联盟T号载人飞船。有16批33名宇航到站上工作,累计载人飞行176天。其中1980年宇航员波波夫和柳明创造了在空间站飞行185天的纪录。1982年4月19日礼炮7空间站进入轨道飞行,接待了联盟T号飞船的11批28名宇航,其中包括第一位进行太空行走的女宇航员萨维茨卡娅。特别是1984年3名宇航员基齐姆,索洛维约夫和阿季科夫在空间站创造了237天的飞行纪录。礼炮7号空间站载入飞行累计达800多天,直到1986年8月才停止载人飞行。

前苏联和平号太空站

目前,苏联于1986年2月20日发射入轨的和平号太空站,已经飞行了8年,仍在轨道上进行载人航天活动。和平号是一阶梯形圆柱体,全长13.13米,最大直径4.2米,重21吨,预计寿命10年。它由工作舱,过渡舱,非密封舱三个部分组成,共有6个对接口。和平号作为一个基本舱,可与载人飞船,货运飞船,4个工艺专用舱组成一个大型轨道联合体,从而扩大了它的科学实验范围。四个专业舱都有生命保障系统和动力装置,可独立完成在太空机动飞行。其中一个是工艺生产实验舱,一个是天体物理实验舱,一个是生物学科研究舱,一个是医药试制舱。这几个实验舱可根据任务需要更换设备,成为另一种新的实验舱。自和平号空间上天以来,至1993年底,已经接待了一艘联盟T号和17艘联盟TM号载入飞船,并先后与进步号,进步M号货运飞船和量子号,晶体号专用工艺舱对接组成轨道联合体。宇航员们进行了天体物理,生物医学,材料工艺试验和地球资源勘测等科学考察活动。最大的轨道联合体总长达35米,总重70吨,俨然象一座太空列车,绕地球轨道不停地飞驰。1987年12月29日,宇航员罗曼年科返回地面时,已经在和平号上生活了326个昼夜。1988年12月21日从和平号上归来的两名宇航员季托夫和马纳罗夫,创造了在太空飞行整整一年的新纪录。

联盟号载入飞船和进步号货运飞船

前苏联的太空站上天以来,一直与联盟号系列载人飞船和进步号系列货运飞船一起,共同组成轨道联合体执行载入航天飞行任务。

联盟号系列载人飞船已更换三代,作为空间站的载人工具。从联盟10号开始,到1993年底共有30艘联盟号,14艘联盟T号,17艘联盟TM号飞船载人到空间站上开展太空科学考察活动。第一代联盟号,主要用于试验载人飞船与空间站的交会,对接和机动飞行,为载人到空间站活动打下了坚实基础;第二代联盟T号,改进了座舱设施,提高了生命保障系统的可靠性和生活环境的舒适性;第三代联盟TM号,又改进了会合,对接,通信,紧急救援和降落伞系统,增加了有效载荷。经过改进的联盟TM号飞船总重7吨,长约7米,翼展10.6米,载3名宇航员和250千克货物最大改进是对接系统,可以在任何姿态下与和平号空间站对接,无需空间站做机动飞行和调整姿态。

进步号系列货运飞船执行向太空站定期补给食品,货物,燃料和仪器设备等任务。到1993年底,已发展两代,共发射进步号42艘,进步M号20艘。它与空间站对接完成装卸任务后即自行进入大气层烧毁。这种飞船由仪器舱,燃料舱和货舱组成,货舱容积6.6立方米,可运送1.3吨货物,燃料舱带1吨燃料。它可自行飞行4天,与太空站对接飞行可达2个月。

7.认识运载火箭

由多级火箭组成的航天运输工具。用途是把人造地球卫星、载人飞船、空间站、空间探测器等有效载荷送入预定轨道。是在导弹的基础上发展的,一般由2~4级组成。每一级都包括箭体结构、推进系统和飞行控制系统。末级有仪器舱,内装制导与控制系统、遥测系统和发射场安全系统。级与级之间靠级间段连接。有效载荷装在仪器舱的上面,外面套有整流罩。

许多运载火箭的第一级外围捆绑有助推火箭,又称零级火箭。助推火箭可以是固体或液体火箭,其数量根据运载能力的需要来选择。推进剂大都采用液体双组元推进剂。第一、二级多用液氧和煤油或四氧化二氮和混肼为推进剂,末级火箭采用高能的液氧和液氢推进剂。制导系统大都用自主式全惯性制导系统。在专门的发射中心(见航天器发射场)发射。技术指标包括运载能力、入轨精度、火箭对不同重量的有效载荷的适应能力和可靠性。

运载火箭的发展

运载火箭是第二次世界大战后在导弹的基础上开始发展的。第一枚成功发射卫星的运载火箭是苏联用洲际导弹改装的卫星号运载火箭(见“人造地球卫星”1号工程)。到20世纪80年代,苏联、美国、法国、日本、中国、英国、印度和欧洲空间局已研制成功20多种大、中、小运载能力的火箭。最小的仅重10.2吨,推力125千牛(约12.7吨力),只能将1.48公斤重的人造卫星送入近地轨道;最大的重2900多吨,推力33350千牛(3400吨力),能将120多吨重的载荷送入近地轨道。主要的运载火箭有“大力神”号运载火箭、“德尔塔”号运载火箭、“土星”号运载火箭、“东方”号运载火箭、“宇宙”号运载火箭、“阿里安”号运载火箭、N号运载火箭、“长征”号运载火箭等。

运载火箭分为哪几种

我国的运载火箭主要是“长征”系列火箭。到目前为止,我国共研制了12种不同类型的“长征”系列火箭。其中,能发射近地轨道、地球静止轨道和太阳同步轨道卫星的,分别是“长征一号”系列火箭、“长征二号”系列火箭、“长征三号”系列火箭和“长征四号”运载火箭。从1970年到2000年的30年间,我国发射“长征”系列火箭共计67次,成功61次,6次失败或部分失败,发射成功率为91%。在1994年至1996年间曾一度几次发射失败,使我国在国际商业发射市场的声誉处于低谷。我国航天工业总公司经过一系列质量整顿后终于重振雄风,自1996年10月到2007年底,我国已连续50多次发射成功,这在世界卫星发射界也是不多见的。

1970年4月24日,我国使用“长征一号”运载火箭发射了第一颗人造卫星“东方红一号”。“长征一号”是在两级中远程导弹上再加一个第三级固体火箭所组成,火箭全长29.86米,起飞总重81570千克,起飞推力为1040千牛。

“长征二号”(CZ-2)系列运载火箭是从洲际导弹的基础上发展而来的,并于1975年发射了1吨多重的近地轨道返回式卫星,成功地回收了返回舱。此后,又根据发射卫星的需要,陆续衍生出“长征二号丙”(CZ-2C)、“长征二号丙改进型”(CZ-2C/SD)和发射极轨卫星的“长征二号丁”(CZ-2D)运载火箭。在“长征”火箭大家族中,“长征二号”系列主要用于发射各类近地轨道卫星,CZ-2C/SD曾以一箭三星方式发射了12颗美国的铱星移动通信卫星。

1986年初,美国的“挑战者号”航天飞机爆炸后,航天飞机被停飞,美国用了很长时间分析和处理故障,其后美国停止用航天飞机发射一般商业卫星。趁此时机,我国仅用了18个月时间就研制成功“长征二号E”(又称“长二捆”,CZ-2E)运载火箭,可以发射原来准备用美国航天飞机发射的商用卫星。“长征二号E”运载火箭是以“长征二号”为芯级,周围捆绑了四个液体助推器,它的近地轨道运载能力高达9200千克。“长征二号E”于1990年试射成功,从1992年到1995年曾发射多颗外国卫星。

为满足发射“神舟号”飞船的要求,保证航天员的安全,我国又在“长征二号E”的基础上改进了可靠性,并增设了故障检测系统和逃逸救生系统,从而发展出“长征二号F”(CZ-2F)运载火箭,专门用来发射“神舟号”载人飞船。

由于“长征二号”火箭的质量和可靠性非常高,1975年至1996年连续成功地把17颗返回式卫星送上天,这使“长征二号”运载火箭在国际卫星发射市场上获得了非常好的声誉。

“长征三号”运载火箭是在“长征二号”二级火箭上面加一个以液氢、液氧为推进剂的第三级,所用的液氢、液氧发动机可以二次启动,在技术上处于当时国际先进水平,是我国火箭技术发展的一个重要里程碑。1984年"长征三号"成功地发射了我国第一颗地球同步试验通信广播卫星“东方红二号”。1985年我国宣布进入国际商业卫星发射市场。1990年我国首次用“长征三号”运载火箭将美国休斯公司制造的“亚洲一号”卫星送入地球同步轨道。

此后,“长征三号”系列不断增加新成员,如“长征三号甲”(CZ-3A)、“长征三号乙”(CZ-3B),主要用于发射地球静止轨道卫星(即地球同步卫星)。“长征三号甲”运载火箭是在“长征三号”的基础上研制的大型火箭,它的氢氧发动机具有更大的推力,性能也得到很大的提高,地球同步转移轨道运载能力也从“长征三号”的1600千克提高到2600千克。“长征三号乙”运载火箭是在“长征三号甲”和“长二捆”的基础上研制的,即以“长征三号甲”为芯级,再捆绑四个与“长二捆”类似的液体助推器。“长征三号乙”主要用于发射地球同步轨道的大型卫星,也可进行轻型卫星的一箭多星发射,其地球同步转移轨道运载能力达到5100千克,跃入了世界大型火箭行列。“长征四号乙”(CZ-4B)运载火箭是“长征”火箭家族中用于发射各种太阳同步轨道和极轨道应用卫星的主要运载工具。

运载火箭的指标

运载火箭的技术指标包括运载能力、入轨精度、火箭对不同重量的有效载荷的适应能力和可靠性。

运载能力

指火箭能送入预定轨道的有效载荷重量。有效载荷的轨道种类较多,所需的能量也不同,因此在标明运载能力时要区别低轨道、太阳同步轨道、地球同步卫星过渡轨道、行星探测器轨道等几种情况。表示运载能力的另一种方法是给出火箭达到某一特征速度时的有效载荷重量。各种轨道与特征速度之间有一定的对应关系。例如把卫星送入185公里高度圆轨道所需要的特征速度为7.8公里/秒,1000公里高度圆轨道需8.3公里/秒,地球同步卫星过渡轨道需10.25公里/秒,探测太阳系需12~20公里/秒。

飞行程序

运载火箭在专门的航天发射中心发射。火箭从地面起飞直到进入最终轨道要经过以下几个飞行阶段:

1.大气层内飞行段:火箭从发射台垂直起飞,在离开地面以后的10几秒钟内一直保持垂直飞行。在垂直飞行期间,火箭要进行自动方位瞄准,以保证火箭按规定的方位飞行。然后转入零攻角飞行段。火箭要在大气层内跨过声速,为减小空气动力和减轻结构重量,必须使火箭的攻角接近于零。

2.等角速度程序飞行段:第二级火箭的飞行已经在稠密的大气层以外,整流罩在第二级火箭飞行段后期被抛掉。火箭按照最小能量的飞行程序,即以等角速度作低头飞行。达到停泊轨道高度和相应的轨道速度时,火箭即进入停泊轨道滑行。对于低轨道的航天器,火箭这时就已完成运送任务,航天器便与火箭分离。

3.过渡轨道:对于高轨道或行星际任务,末级火箭在进入停泊轨道以后还要再次工作,使航天器加速到过渡轨道速度或逃逸速度,然后航天器与火箭分离。

设计特点

运载火箭的设计特点是通用性、经济性和不断进行小的改进。这和大型导弹不同。大型导弹是为满足军事需要而研制的,起支配作用的因素是保持技术性能和数量上的优势。因此导弹的更新换代较快,几乎每5年出一种新型号。运载火箭则要在商业竞争的环境中求发展。作为商品,它必须具有通用性,能适应各种卫星重量和尺寸的要求,能将有效载荷送入多种轨道。经济性也要好。也就是既要性能好,又要发射耗费少。订购运载火箭的用户通常要支付两笔费用。一笔是付给火箭制造商的发射费,另一笔是付给保险公司的保险费。发射费代表火箭的生产成本和研制费用,保险费则反映火箭的可靠性。火箭制造者一般都尽量采用成熟可靠的技术,并不断通过小风险的改进来提高火箭的性能。运载火箭不像导弹那样要定型和批生产。而是每发射一枚都可能引进一点新技术,作一点小改进,这种小改进不影响可靠性,也不必进行专门的飞行试验。这些小改进积累起来就有可能导致大的方案性变化,使运载能力能有成倍的增长。

80年代以来,一次使用的运载火箭已经面临航天飞机的竞争。这两种运载工具各有特长,在今后一段时间内都将获得发展。航天飞机是按照运送重型航天器进入低轨道的要求设计的,运送低轨道航天器比较有利。对于同步轨道航天器,航天飞机还要携带一枚一次使用的运载器,用以把航天器从低轨道发射出去,使之进入过渡轨道。这样有可能导致入轨精度和发射可靠性的下降。

一次使用的运载火箭在发射同步轨道卫星时可以一次送入过渡轨道,比航天飞机稍为有利。这两种运载工具之间的竞争将促进可靠性的提高和成本的降低。

影响运载火箭飞行的主要因素

在运载火箭安全可靠的前提下,天气是影响运载火箭飞行的主要因素。天气对两个环节影响最大:转运和发射。

转运是指把运载火箭与飞船的船箭组合体从总装厂房转运到发射塔架,其间距离1500米。转运阶段影响最大的是距地面0~80米的浅层风,因为转运时飞船已经加注,而火箭还没加注,处于头重脚轻的状态,风速过大可能让火箭失去平衡。

发射时最重要的天气因素则是距地面8~15千米的高空风。这是大气层里风速最快的地方,风速太大会影响火箭的姿态。同时,风的切变如果太大,比如说,上下层风速不一样,或者风的方向不一样,可能使火箭发生扭曲。

其他影响发射的因素还有云量、能见度、降水、地面大气电场强度等。

载人航天发射的最佳气象条件主要包括:

总云量0~3成,无降水;

地面风速小于8米/秒;

水平能见度大于20千米;发射前8小时至发射后1小时,发射场区30~40千米范围内无雷电活动;

船箭发射所经过空域3~18千米高空最大风速小于70米/秒。

8.了解运载火箭的构成

不管是固体运载火箭还是液体运载火箭,不管是单级运载火箭还是多级运载火箭,其主要的组成部分有结构系统、动力装置系统和控制系统。这三大系统称为运载火箭的主系统,主系统工作的可靠与否,将直接影响运载火箭飞行的成败。此外,运载火箭上还有一些不直接影响飞行成败并由箭上设备与地面设备共同组成的系统,例如,遥测系统、外弹道测量系统、安全系统和瞄准系统等。

箭体结构

是运载火箭的基体,它用来维持火箭的外形,承受火箭在地面运输、发射操作和在飞行中作用在火箭上的各种载荷,安装连接火箭各系统的所有仪器、设备,把箭上所有系统、组件连接组合成一个整体。

动力装置系统

是推动运载火箭飞行并获得一定速度的装置。对液体火箭来说,动力装置系统由推进剂输送、增压系统和液体火箭发动机两大部分组成。固体火箭的动力装置系统较简单,它的主要部分就是固体火箭发动机推进剂直接装在发动机的燃烧室壳体内。

控制系统

是用来控制运载火箭沿预定轨道正常可靠飞行的部分。控制系统由制导和导航系统、姿态控制系统、电源供配电和时序控制系统三大部分组成。制导和导航系统的功用是控制运载火箭按预定的轨道运动,把有效载荷送到预定的空间位置并使之准确进入轨道。姿态控制系统(又称姿态稳定系统)的功用是纠正运载火箭飞行中的俯仰、偏航、滚动误差,使之保持正确的飞行姿态。电源供配电和时序控制系统则按预定飞行时序实施供配电控制。

遥测系统

功用是把运载火箭飞行中各系统的工作参数及环境参数测量下来,通过运载火箭上的无线电发射机将这些参数送回地面,由地面接收机接收;亦可将测量所得的参数记录在运载火箭上的磁记录器上,在地面回收磁记录器。这些测量参数既可用来预报航天器入轨时的轨道参数,又可用来鉴定和改进运载火箭的性能。一旦运载火箭在飞行中出现故障,这些参数就是故障分析的依据。

外弹道测量系统

功用是利用地面的光学和无线电设备与装在运载火箭上的对应装置一起对飞行中的运载火箭进行跟踪,并测量其飞行参数,用来预报航天器入轨时的轨道参数,也可用来作为鉴定制导系统的精度和故障分析依据。

安全系统

功用是当运载火箭在飞行中一旦出现故障不能继续飞行时,将其在空中炸毁,避免运载火箭坠落时给地面造成灾难性的危害。安全系统包括运载火箭上的自毁系统和地面的无线电安全系统两部分。箭上的自毁系统由测量装置、计算机和爆炸装置组成。当运载火箭的飞行姿态,飞行速度超出允许的范围,计算机发出引爆爆炸装置的指令,使运载火箭在空中自毁。无线电安全系统则是由地面雷达测量运载火箭的飞行轨道,当运载火箭的飞行超出预先规定的安全范围时,由地面发出引爆箭上爆炸装置的指令,由箭上的接收机接收后将火箭在空中炸毁。

瞄准系统

功用是给运载火箭在发射前进行初始方位定向。瞄准系统由地面瞄准设备和运载火箭上的瞄准设备共同组成。

9.运载火箭要垂直起飞

首先是运载火箭的体型庞大,长度达十几米至几十米,直径达几米至十几米,如果倾斜发射就得有一条比箭体更长的滑行轨道。这种滑轨不仅相当笨重、稳定性差、行走困难,而且发射时所产生的振动,势必会影响火箭的轨道精度。并且放置滑轨就得有一个很开阔很平坦的发射场,同时由于火箭处于倾斜状态,点火启动时尾部会喷射出高温高速高压燃气流,因此还需要有一个相当长的安全区。

其次是火箭飞行的绝大部分时间是在大气层以外的空间。垂直发射有利于火箭迅速穿过大气层,减少因空气阻力而造成的飞行速度损失。当然,这种垂直飞行的时间也不宜过长,否则在重力作用下,火箭的飞行速度损失也会很大。所以运载火箭的垂直飞行段一般在4~15秒范围之内,在垂直飞行一段时间后就要改变垂直飞行方向,进行程序转弯。

第三是采用垂直发射可以简化发射设备,在发射台上工作可以设计得很紧凑,并且能够很方便地使竖立在发射台上的火箭在360°范围内移动,从而满足调整射向的需要,并保证火箭系统的稳定性和射向精度。

第四是大型运载火箭一般都是使用液体推进剂,因此垂直状态发射便于推进剂的精确加注或泄出。

第五是现在大部分的运载火箭都采用惯性控制系统。它要求火箭在发射前精确确定它的初始基准和调零,这样才能保证有效载荷准确地进入地球轨道。而垂直发射对实现这一要求,要比倾斜发射方便得多。

第六是运载火箭的推重比(火箭发动机的地面额定推力与火箭的起飞重量之比)一般都比较小。如最早的V-2火箭的推力为26000千克,起飞重量为13000千克,推力比为2。现在运载火箭的推重比一般为1.2~1.6(固体火箭的推重比可达2.0以上)。火箭垂直放置发射台上,发射时只要推力稍微超过起飞重量,火箭就可以腾空而起。随着推进剂的不断消耗,火箭的重量逐渐减小,飞行速度愈来愈快。由此可见,垂直发射对于火箭的加速和能量的利用,都是十分有利的。

从1944年德国发射V-2火箭开始,至今世界各国发射运载火箭大多均采用垂直发射。如起飞重量达2930000千克的“土星5号”运载火箭,就是采用垂直发射的。又如往返于地面与太空的航天飞机,也是采用垂直发射方式升空的。

10.航天员的生命之塔

目睹神舟五号飞船发射壮观景象的人们一定都会注意到,在火箭顶端有一个避雷针似的尖塔装置,它便是完全由我国自主研制的载人航天逃逸救生系统,学名叫逃逸塔。

逃逸塔承担着双重重大使命,一是在火箭发射过程中,万一发生危及航天员生命安全的意外紧急情况,要确保航天员瞬间逃生、安全返回。二是在发射顺利时它还必须点火工作脱离箭体,让飞船得以继续飞行,所以在整个发射过程中逃逸塔倍受瞩目。神舟无人试验飞船四次遨游太空,逃逸系统次次成功经受了考验,成为航天员放心大胆去巡天的“定心丸”。

而铸就“生命之塔”的就是航天科技集团公司第四研究院的航天人。

攻关克险才智无穷

在逃逸塔是确保航天员生命安全的重要保障系统,由于形状特殊、要求极高且是从零起步,技术难度很大。因此,逃逸系统的研制从一开始就被确定为载人航天必须突破的三大技术难关之一。

1995年4月19日,整个逃逸系统动力装置四种型号10台发动机中最大、也是结构最复杂、研制难度最大的主逃逸发动机,首次热试车点火后不到1秒钟,摄氏3000多度的高燃速火焰瞬间将四个前置喷管的弯管部分全部烧穿,四射的火箭将整个试车台烧成了一片火海。乍暖还寒的天气,这个意外的“下马威”将让四院人的心一下子掉进了寒冷的冰窖。

针对问题,四院领导和型号总指挥、总设计师连夜召开了故障分析会。总指挥、总设计师研究后决定,从设计、材料、工艺、技术等多方入手,多管齐下,成立十多个工艺技术攻关小组协力攻克难关。正值一年当中最为酷热的季节,一场旷日持久、牵涉甚广的“百日攻关”大战开始了。

攻关组的技术人员和一线的工人师傅遴选了成百种材料和配方,做了上千次试验,测试了上万个数据。终于,不知道经过多少个没日没夜的艰难鏖战,多少次模拟试验,新的绝热材料和成型工艺找到了。四个月后,产品成功经受了地面热试车的考核,试车结束后界面解剖结果表明,绝热层不但没有烧穿,还有相当的余量,试车取得圆满成功。

此后,四院不断突破,先后攻克了瞬时大推力特种固定发动机设计、超高强度钢异型机械加工、高燃速推进剂配方及工艺、高燃速发动机抗冲刷抗烧蚀绝热防热、高燃速大推力发动机装药及精密测试技术等关键工艺技术难关,把10多项中国之最甚至是世界之最,写在了中国和世界航天史上,也把中国航天人的风采展现在世人面前。

1997年,逃逸系统动力装置在全系统率先转入试样阶段研制。1998年10月19日,全面考核神舟飞船应急救生系统综合能力的飞船零高度飞行试验获得圆满成功,四院研制的四种型号10台发动机均按指令点火工作,向祖国和人民交上了一份非常满意的答卷。逃逸发动机喷出的火焰和它划过的优美轨迹绘就了中国载人航天工程研制史上第一幅壮丽的彩图。

严抓质量毫不留情

由于逃逸系统承担着双重重大使命,无论火箭发射成功与否,它都必须成功,失败不起。

因此,四院始终把提高产品的质量和高可靠性放在首位。四院院长兼总指挥周为民要求自己和全体参与研制人员务必常存“战战兢兢,如履薄冰,如临深渊”的心态。因为深谙此理,周为民处理质量问题毫不留情。“出了质量问题,惟你是问!”“出现低水平重复性质量事故者视同下岗!”“成功后,我重奖你们!”这些话听起来有些生硬,其实就是军令状。

一次,一位为产品倾尽了心血的老师傅,在检查一批螺栓时,居然出现了漏检事故。周为民挥泪斩马谡,严肃处理了这位老师傅,并在全系统范围内开展质量整顿,复查了上千道工序的质量控制规程和元器件。事后,周为民找到那位老师傅力陈其中的利害,老师傅老泪纵横地说:“我知道,我们现在的任何一个小小的失误,将来都有可能是对航天员甚至整个载人工程的犯罪啊!”

正是由于严格的质量控制,才确保了四院的发动机不带任何疑点出厂、“零缺陷”交付总体,实现了产品交付合格率100%,飞行试验成功率100%的质量目标。

西北望长安,金秋色更浓。四院航天人研制的逃逸系统巍峨矗立在长二F火箭之巅,在神箭飞天的时刻,他们的心也随着神舟飞船欢畅地遨游太空。

11.太空中的衣服:航天服

宇宙服是高科技产品,它像密封座舱那样,具有能保障航天员生命的一切功能。它是密封的,里面充气,形成一定的气压,使航天员免受体外负压的伤害。它有供氧设备,以维持航天员的正常生命活动。它可以散热和保暖,使内部的温度保持在一定的范围内,使航天员免遭太空极端低温的伤害。它能处理航天员呼出的二氧化碳和其他有害气体,它能防止宇宙辐射和微流星体的伤害。宇宙服看似笨重,但航天员穿了它仍能活动自如,能饮食,也能大小便。为了便于航天员在太空行走,宇宙服内还装有通信设备和动力设备。

航天员通用的航天服/EMUs有12层夹层,每个都有其特殊的用途。航天服包括背包在内净重近280磅(在地面)。当然了在太空中它没有重量(即使什么都没有变化)。

航天员必须穿这么重装备的原因

一旦航天员进入有压力的生活舱,他们就穿上地面上的人们在温暖的春天穿的衣服,通常是短裤、短袖衬衫和袜子(因为他们的脚需要一些防碰撞保护和防寒,但他们不走路,所以不需要鞋子。)们仅在发射和返回以及走出气压舱进行太空船外活动或舱外活动的时候需要穿上特殊的衣服。发射/着陆服有防火功能和在航天飞机的加压系统失控后维持身体周围的压力不变的作用。

航天员舱外活动穿的航天服要提供维持生存的氧气和压力。它们必须使航天员免受快速飞行的太空碎片的伤害,所以他们的航天服必须有压力。当他们背向阳光,远离太阳光照射变冷的时候,航天服必须保暖。衣服提供与地面、航天飞机和其他舱外活动的航天员联系的无线设备。提供太空短途行走和在黑暗中工作所需的光线,避免航天员的眼睛受太阳光的直接照射,便于携带外出工作的工具,满足航天员生理需要的食物。航天服要保证六小时无故障,可适应不同航天员的要求。你可以将它看成小型的太空船。在地球上它重达280磅,但是在太空中没有重量。

航天服简直就是小型的太空船,它需要保证航天员在舱外活动时的健康和连续工作的需要。由于在太空中没有气压,没有氧气维持生命,人类必须有适合他们生存的环境。和航天飞机工作舱内的空气一样,航天服中的空气也是可以控制和调节的。

这样,航天服的主要功能必须为呼吸提供氧气,同时要维持身体周围的气压稳定,并使身体内血液处于液态状态。在真空或非常低的气压状态时,身体中的血液就会像高山顶上的热水一样沸腾了。

航天飞机上配备的航天服可以承受每英尺4.3磅的压力,这仅是正常大气压的三分之一(每个大气压等于14.7 psi)。由于航天服内的气体是100%的氧气,而不像我们在地球的大气层只含有20%的氧气,穿上航天服的航天员要比那些在海拔10,000英尺的高山或身处海平面没有穿航天服的人呼吸到更多的氧。在离开太空船去太空工作之前,航天员要呼吸几个小时的纯氧。这是去除溶解在血液中的氮和防止当气压下降时释放出气泡的必要程序,这种情况通常称为潜水减压病。

另一方面,如果在正常大气压下呼吸纯氧过长,它就会变成对人体有害的气体。这种吸氧排氮对航天员来讲是过分的、毫无益处的和令人厌烦的等待,确实是件麻烦事,我们将航天服的内部气压设计为8.3 psi,这样可以缩短吸氧排氮的时间。

航天服必须具有保护航天员免受致命伤害的作用,它除了可以防止微流星体的撞击外,航天服也要避免航天员受到太空温度极限的伤害。没有地球大气层来过滤阳光的辐射,朝向太阳的一面温度可高达250度,背向阳光的一面,就在零下250度。

航天服的主要特点是:除了靴子和手套有多层结构外,背面有生命支持系统,胸部是显示控制模块,还有就是为太空漫步者和处理紧急情况而设计的装备,特别是备用的供氧系统。这些组合成一个被称为EMU的集合体(舱外机动装置),它可以实现不同子系统之间的自由转换,无论是在正常情况下或紧急情况下都可以容易和安全地连接。

还有一些特殊装置:尿液储存器,在返回航天飞机或空间站以后将尿液输送到废物处理系统;有一个网孔状的弹性纤维制成的液体冷却和通风服,衣服前面的入口处有拉链,它6.5磅重;内衣中的冷却管内,水在不停流动着,使航天员穿上时感到很舒服。安装冷却管的原因是因为衣服内是纯氧层,它不可能像在普通空气中那样提供足够多的冷气。还有就是可装21盎司的内衣饮水袋,“探测帽”或通讯载体组合装置,供双向通讯的耳机和麦克风及预警和报警装置,及生物医学探测子系统。

在太空行走的时候,航天员绑上在地面重达310磅的单人机动装置(MMU),一个单人的氮推动器背包,它固定在航天服携带式生命保障系统上。航天员利用可调控旋转和平移的手控制器,可以准确的飞入或围绕航天器货船入坞码头运动,或自由的进入航天飞机或空间站附近的有效载荷或建筑内,也可以到达其它很多似乎遥不可及的外部区域。航天员穿着被称为“太空自行车”的MMU’s,在发射、服务、保养和找回人造卫星方面发挥了很大作用。

12.太空就餐:航天食品

所谓“航天食品”,一般是指专供航天员在太空执行任务时和返回着陆等待救援期间食用的食品、饮水。它重量轻,体积小,营养好。航天员的菜单上已有80多种可口的食品和饮料。

在世界航天食品当中,我国的航天食品有中国特色,特别是许多传统的中式菜品都出现在航天食谱中,比西餐更加美味宜人。中国特色的航天食品包括种类繁多的鱼、肉类罐头,主食是脱水米饭、咖喱米饭等;菜肴也很丰盛,有鱼香肉丝、宫保鸡丁等,甚至还有大虾等海鲜。饮品则有以“水苏糖”为主要原料的速溶绿茶等。

航天食品确实是一种营养结构很合理的食品,有助于调整人体的营养结构和增加体能。但我们要认识航天食品的特殊性,特定的航天环境使航天员的口味要求变得非常特殊,吸收消化能力也受到一定影响。航天食品就是为适应这些特点而产生的,而地面的环境未必能让所有人产生这种口感。

航天食品种类繁多。那么它的加工方法和食用方式会是怎样的呢?以陈皮牛肉为例。作为航天食品它就必须经过高温处理后再做成罐装食品,这样才可长期保存。食用时,用加热器加温即可食用。这种食品称为热稳定食品,用金属罐或蒸煮袋包装,俗称“软硬罐头”,它们的特点是不仅含有正常量的水分,而且与普通食品从口感到形状最接近。由于空间运动病和失重环境对机体的影响,航天员的食欲会有所降低,这样会影响航天员的工作效率和身体健康。

现在,我国科技工作者已开发了几十种航天食品,可以想见,随着航天事业的发展,我们的航天食品会更加丰富,给航天员提供一个舒适的饮食条件。

航天食品大致有如下两种类型:一类是在太空止常飞行时航天员所要吃的食品,另一类是在特殊情况下所要用的食品。

正常飞行情况下吃的的航天食品

即食食品。它是拿过来就吃的东西,不需要进行再加工,如含中等水分、一口大小的压缩成型的或用涂膜处理的干燥食品等。

复水食品。这种食品是冷冻干燥食品,因为它在被送上太空时轻而小,在航天食品中占有较大比重,但在食用前必须复水,在它的包装袋上都有一个单向入水阀门,以便复水用,复水后即可食用。

热稳定食品。这类食品是经过加热灭菌自理的软包装和硬包装罐头类食品,太空飞行证明,在失重条件下用普通餐具由开口容器中取食完全可行。这类食品占航天食品的比例也很大。如苏联礼炮6号空间站中这种食品占80%左右。

冷冻冷藏食品。这类食品是在地面上冻好带进太空的。溶化后可食用。

辐射食品。这是经过放射线杀菌后的食品,它曾在美航天飞机飞行中少量使用过。

自然型食品。地面上没经处理的食品,如新鲜水果,蔬菜、面包、果酱和调料等。

复水饮料(冲剂或软固体饮料)。它是是在太空加水溶解后制成的冷饮或热饮。在包装上美国早期用复水饮料袋,后改用折叠塑料瓶和方形复水包,以便用吸管吮吸。

特殊的航天食品

备用食品。它是指在发生特殊情况必须延长飞行时所用的食品,其类型同前。

应急食品。这种食品是指在飞行器发生故障时,航天员必须穿着航天服时所用的食品,如铝管包装的半固体果酱、菜泥、肉羹等。应急食品也包括当航天员着陆后,降到远离人烟的地方。等待救援期间饮用的食品。

舱外活动中需要吃的食品。这是指存于头盔内预圈部分的固体或半固体、流质供食器中的食品,供长时间舱外活动中临时给航天员饮用的食品。

如何搭配进食和建立饮食制度也是很重要的问题。饮食制度是按航天乘员的生活工作和锻炼情况,来合理安排每日的进餐次数、每餐食品量和热量,进餐间隔时间的一种规定。也是制定每天食谱的依据。如苏联礼炮6号空间站上规定:每天4餐,每餐食品量和热量接近均等;各餐间隔时问为3~5小时;锻炼后要15~20分钟才能进餐;锻炼或紧张脑力劳动,必须在饭后1~1.5小时后才能开始。美国采用每日3餐的制度。

13.失重环境下生活

失重环境被人形容为“潘多拉”魔盒,奥秘无穷。在航天飞行中产生失重是宇宙的造化,它的本质不是用简单的几句话能说清楚的,但又不能完全不说。这里试着用比拟的手法形象地稍作说明。

航天器作轨道飞行时为什么会失重,用牛顿力学的语言说,是它的离心排斥力与天体对它的引力相互抵消。这种离心排斥力是由离心加速度产生的,即离心惯性。在爱因斯坦广义相对论中,引力并不是一种力,而是弯曲时空的一种属性。质量使时空弯曲,即将时空压出坑、阱来。不同质量的天体使时空弯曲的曲率不同,即压出不同深度的阱和沟(瞬时为阱、动态的为沟),这曲率值就是引力的大小,也就是“引力阱”的深度。广义相对论的一个重要理论是“加速度与引力等价”,这就是说,加速度可以抵消引力。形象地说,物体的运动加速度可以“填平”引力阱,或者说将弯曲时空拉平拉直。这里,我们或许可以说,失重是平直时空的属性。

任何形象比拟只能是简略的近似,一般是蹩脚的,很可能是荒谬的。

前面我们说了失重捉弄人的许多事例,其实,这不及失重为我们提供认识宇宙、发展科技文明的巨大机遇的万一。在失重环境中,浮力和对流消失,毛细作用和附着力增强,表面张力成为液体物质的一种主要力,物质的电势、磁势、热电音响,以及热和质量的传导等性质都发生变化。如何利用失重创造的这些独特的条件,更深刻地认识宇宙规律、提高科技文明水平,是人类的造化。

目前,科学家正在利用失重环境的特有条件,进行生命科学、宇宙动力学等等在地面上难以进行的实验研究;生产地面上难以均匀混合的新型合金和生长大型晶体等工业材料;高效率地制造地面上难以制造的高纯度的药物等等。

当然,在利用失重环境时,仍要小心被失重捉弄。美国科学家曾遇到过这样一件事,他们研制的一套试验装置,在地面上经反复检查测试,一切正常。但是,由航天飞机带入太空进行实验时,却毫无结果。在寻找失败原因时,仍然发现一切器材都很正常。经反复查找研究,才发现原因在一个并不重要的卤化灯上--卤化灯中的气体在失重环境中不对流!

14.航天员在太空的吃与喝

太空中的高真空、强辐射、微流星体、低温或极端温度等环境,如果没有妥善的生命保障措施,定会使撞入者立刻人仰马翻。而太空轨道飞行产生的失重环境,虽然不如前述环境因素那样显得凶神恶煞,但却是一位高明的捉弄者,会使进入者食不甘味、寸步难行,甚至“灵魂”出窍、迷失方向。总之,失重像是一面“哈哈镜”,将人们在地面上的衣食住行、吃喝拉撒睡习惯全部扭曲了,甚至连生老病死也变得难以琢磨。这里,我们先来领略失重“偷走”饮食中香色味的本事。

中国饮食讲究的是“香、色、味、形”,可失重环境中的饮食又如何呢?

在航天初期,为不使食品粉末在密封座舱的失重环境中到处飘飞,损坏仪器设备和航天员的身体健康,食品都是糊状的。为了便于食用,还将糊状食品装在软管中,食用时像挤牙膏一样往嘴里挤。饮料同样装在软管中。这样,食品的香气被封住了,颜色看不见了,形状也谈不上了,进餐的情趣就单纯地为了填饱肚子。因此,航天员普遍反映没有食欲。

后来有了压缩方块食品,打开复合塑料膜包装,掰起来放进嘴里食用;还有软包装罐藏食品,就是将蒸煮灭菌后的鸡、肉、鱼片用复合塑料薄膜代替金属罐包装。由于这种食品有一定粘性,打开后放在盘子上不会飘飞,可像地面上一样用刀叉进食。

为了进一步增加进餐情趣,还研制了脱水食品,就是将食物经冷冻、升华干燥,使含水量减至3%左右,用复合膜包装后,在室温下微生物也难以生长繁殖。备餐者用针管往包里注水,食品可迅速恢复原有的形状和颜色,有的还需加热,然后放在盘中,让大家像地面上一样进餐。

这些改进的食品,虽然可以看见颜色,也有一定的形状,但仍无法将“香”和“味”从失重那里完全夺回来。因为失重使人的体液上涌,鼻腔充血、唾液分泌发生变化,导致味觉神经钝化,因而闻不到香气,味觉也普遍不佳。香和味仍然被偷走了。

在太空飞行的初期,有些科学家推测,人在微重力条件下可能会发生吞咽困难,吃进去的食物可能会卡在喉咙部,咽不下去。后来的实践证明,这些推测是错误的,人在太空中吃东西并不困难,吞咽也没有问题。因为人们吞咽食物是靠肌肉,跟重力关系不大。而且根据航天员反映,在微重力条件下吞咽食物,似乎比在地面上更容易。

在微重力条件下,用普通餐具从开口容器中很容易取出食物,特别是有黏性的酱、浓的汤和果汁、布丁以及肉块等,更容易用匙和叉取出来。只要稍加小心,用匙取出来后还可以送入口中,中途不会漂浮或溅出。但是如果食物不带汤汁或没有黏性,则可能四处漂浮或飞散。另外,如果食品中含植物油太多,油又浮在表面,则油滴可能会飞溅出来。研究人员还发现,在微重力条件下用匙取食物比用叉还可靠。例如,用匙盛牛奶,在微重力条件下如果拿匙的手左右晃动,牛奶不会被晃出来;但如果是在地面,牛奶早被晃到地上。专家们认为,这是因为在微重力条件下液体的运动主要是受表面张力、内聚力和黏着力的控制;在地面,则主要是受地球重力的控制。

早期的太空食品是糊状食品,如苹果酱、牛肉酱、菜泥和肉菜混合物之类。这些糊状食品分别包装在塑料袋中。袋的一端有一个进食管,用手挤压塑料袋,食品就通过进食管挤入口中。除糊状食品外,还有需要加水才能吃的“复水”食品和一口可吃掉的“一口吃”食品。根据航天员反映,糊状食品口感不好;“复水”食品加水后不易软化;像牙膏状包装的食品令人恶心;“一口吃”食品在吃的过程中会喷出许多碎屑,不仅会弄脏周围的仪器设备,还可能吸入肺中,造成严重后果。

在太空中喝水

在太空中喝水也不容易,因为水在失重环境中是不流动的,不能像在地面那样往低处流。一个装满水的杯子朝上朝下放都是一样的,杯子里的水不会自己流出来,如果动它一下,杯子和水会同时漂浮起来。但要注意也不能把水弄到空间,因为它和别的物质一样会在空中飘荡,被人吸到鼻子里也会影响健康,还会危及仪器设备的安全。那么,我们要喝水怎么办呢?太空中的饮用水和航天食品一样,也是用密封袋装的,可用软管或对着袋嘴挤着喝。在太空中喝的饮料通常装在袋中,有固体和液体之分。如是固体饮料粉,就得用一种“水枪式”的工具往袋里注水,这时会出现一种有趣的水和固体产不相溶解的现象,还须加力才能溶解。喝水时用手挤着喝,劲还不能过猛,否则水被挤到空间变成雾状。

15.有别人间的太空日常生活

太空与地球上最大的不同就是引力的差别。在地球上,物品受到地心引力的吸引,产生重量,可以稳稳地“固定”在地面上;但是在太空中没有引力,所有的东西都会漂浮在空中,因此在太空中无论吃饭、洗澡、睡觉、上厕所,都必须要有特殊的器具,否则不但尝不到美食,睡不好觉,连尿液、粪便也会到处乱飘。

航天员在太空怎样行走

准确地说航天员在太空舱是无法走动的,因为没有重力,人就处于飘浮状态,无法立在地板上,所以走动是不行的。但是航天员有自己“走动”的方式:飘动。航天员在太空舱中运动,一般依靠抓住太空舱壁上的一些“抓手”让自己飘浮的身体向前移动,同样航天员也能够通过向太空舱壁施加一个推力,然后自己就能向相反方向运动了。不过这些“走动”方式都应该注意安全,以防止撞到太空舱壁上。

人在太空行走,如同一粒尘埃飘浮在空气中,感觉比踩在棉花上还要“无助”。因为在太空中人处于失重状态,这样如果不依靠外力的话,人是根本无法“行走”的,一般的太空行走实际上可以称做“太空飘浮”。所以在出舱进行太空行走的时候一定要系上一根“安全带”,通过这根带子把自己和飞船连在一起,否则人有可能会飘离太空舱而永远无法返回舱内。现在,美国航天员在太空行走中都采用了背包式推进装置,这样通过控制背在背上的推进器,航天员就能够在太空相对方便地移动了,但是一根与飞船间相连的“安全带”还是必不可少的。

航天员在太空怎样大小便

航天飞机上或空间站上,都设有专门的厕所。这当然和地面上的不一样,它要用特别的设施,一般它设在废物管理舱的房间里,厕所内有一个呈漏斗状的收尿器,收尿器内通气流可把排出的尿吸收进内部的收集袋里。收集袋每天要换一次。收集时要将空气排出,这样小便就不会飘来飘去。舱壁上还镶嵌一个渗透力强的滤水袋,每用一次,更换一个。滤水袋通过气流,使粪便沉淀固化。为了掌握宇航员在太空的生活情况,宇航员每次上天都要将自己的一部分大小便冻结成标本,在返回地球时,供科学家们分析研究。

最近,美国科学家设计了一种新型航天飞机用马桶。这种新型马桶造价2340万美元,它比老式航天飞机用的马桶体积大,性能优良,使用方便。它可以贮存足够多的粪便。为航天飞机在太空停留更长时间提供了可能。老式马桶只能贮存7位宇航员4天的排泻物,限制了航天飞机在太空的飞行时间。这种新型马桶直径20厘米,大小是老式的2倍,并配有易于装卸的粪便贮存罐。另外,它还安有高功率尿液风动分离器。该分离器配有一个单独的漏斗和一根吸管。

航天员在太空怎样刷牙洗脸

和地面上生活一样,宇航员早晨起来,也要刷牙、洗脸、梳头,有时还要把胡子剃光。

刷牙按照地面上的刷牙方式是取出牙刷,挤上牙膏,然后漱口。而在太空,这种方法就行不通了,因为很难控制水不漂浮。所以,苏联宇航员是用湿毛巾刷牙,在手指头上缠上一段湿毛巾,沾点清洁剂,伸进嘴里,反复地摩擦牙齿,这一方面可以起到清洁牙齿的作用,另一方面,也起到了对牙龈按摩的作用,所以效果很好。美国宇航员除了采用上述方法刷牙外,还咀嚼特制口香糖以代替刷牙,感觉也不差。

洗脸洗脸的方法是用一块浸泡着护肤液的湿毛巾来擦擦脸,或者用浸过润肤液的卫生巾来“洗脸”。

梳头梳头是用一块卫生巾铺在特制的电动梳头器上,用以梳理头发,经过梳理的头发很干净,头皮屑都粘在卫生巾上,而且头部得到了按摩,宇航员感到特别舒服。

剃胡须这在地面上是轻而易举的事,而在失重的太空就需要特制的剃须刀。美国和苏联宇航员使用的电动剃须刀,带有专门用来吸胡须渣的匣子,以免在刮脸时胡须渣到处飘浮而影响生活。

航天员在太空怎样淋浴

洗澡,在太空是比较麻烦的,如果是短期飞行,宇航员一般用浸有特制清洁液的毛巾擦身以代替洗澡,长期逗留在太空的宇航员一般每十天入浴一次,平时也都是擦身,有的用毛巾捧起一团水,放在皮肤上,水就会贴着皮肤,然后“淌”遍全身,人也感到舒适:真正入浴时,则是进入一个特制的浴桶,但事先要花费半个小时做准备工作:待调校好所有机关后才能入浴,最后利用真空吸力吸走身上的皂泡和水:苏联“礼炮号”空间站内,科学家专门设计制造了一间特殊的宇宙浴室以及配套的设施:宇宙浴室最关键的措施是控制水不飘浮而让它按照人的意志分布。

这间浴室是一个折叠得像一个手风琴式的密闭塑料布套,折叠着放在生活舱卫生间的顶棚上,用时把它放下,不用时浴室上方有一个圆筒形水箱,有电加热控制水温,还有喷头和贮水箱相通的管道,水箱内装有5公升水浴室的地板上有许多小孔,下面是废物集装箱,用于盛废物和污水还有一双占定的橡皮拖,穿上拖鞋,人就不会飘动浴室放下后,形成一个真空环境。

宇航员洗澡时,首先把通到浴室外的呼吸管套在嘴上,用夹子把鼻孔夹住,避免从鼻子和嘴中吸进污水接着开动电加热器,把水箱中的水加热到适当的温度,然后打开喷头,温水即从上面喷下来浇到身上此时和地面上的淋浴完全一样浴室的污水从地板上的许多微孔流到下面的废水箱内,废水箱满后,会自动报警,井将废水自动送入水处理系统。

在未来的宇宙空间洗澡,是一件复杂的技术工作,水的控制需要有加压和抽吸的外力当然还小能忘记竹约用水当淋浴完毕,由桶内走出来时,由于太空中空气十分干燥,身上剩余的水分极快速地蒸发,会令身体无法控制地颤抖一分钟。

在未来的空问站上洗澡,其洗澡程序比现在要简单得多,人们进入浴室,只需要用手指轻轻按一下开关,水就会自然地附在身上,如果稍稍多用一点水,就会产生很多大小不一的闪闪发光的水珠,像星星一样绕着身体小停地旋转在身上浸透了清洁液后按下旁边的开关。就有一股向下的气流,把清水淋向全身,大约5秒钟后,门上的气流就会把身体吹干。

航天员在太空怎样称体重

航天员在空间站上长期工作时要定期检查身体的健康状况,要称体重。由于太空中航天员处于失重状态,因而在太空中称体重与在地面称体重的方法完全不同。航天员在空间站上称体重时,首先站到一个位于杠杆之上的踏板上,使踏板上的一根弹簧收缩,然后借助一种专门扳手的帮助松开弹簧,使弹簧发生振动。测量仪通过测量弹簧的振动幅度,即可测量出航天员的体重。

这种体重测量仪是苏联专家专门为在太空工作的航天员称体重而研发出的。早在1974年,苏联航天员在“礼炮3号”空间站工作时就开始使用这种仪器测量体重。

航天员在太空中是怎样打发业余时间的?

他们根据自己的不同喜好,各有偏重。在飞行中,他们可以各自选取自己喜欢的娱乐。有的可以利用膝上型电脑看书或给家人发邮件,有些人在听音乐或玩游戏,再有些人就是与地面的亲友打电话或与其他同事聊天。可是绝大多数航天员在刚进入空间站时,大部分业余时间是站在窗旁,眺望宇宙和注视着地球从空间站下消失。

16.艰难的太空睡眠

人进入太空以后,航天医学专家就利用特有的失重条件,对睡眠进行深入的研究。由于失重,人的方向感丧失了,所以不管人体处于什么方向,是横还是竖,是正还是倒,都可以飘浮着在空中睡眠。但是,为了安全应该睡在有防火等功能的固定着的睡袋中,以免飞船加减速时碰伤,或被流动气流推动误碰仪器设备开关。

提高睡眠质量,还应创造条件,产生与地面上睡眠相同的感受,如给睡袋充气,或用绷带绑紧,使它向人体施加一定的压力,以模拟地球重力;带上眼罩,不让航天器上快速交替的昼夜节奏影响睡眠,或者用灯光模拟地面上的昼夜节奏;带上耳塞,不让仪器设备和静电产生的噪声干扰睡眠,有条件时,应设专门的消音寝室。

在失重环境中,会产生头、四肢等可转动的肢体与躯干分离的幻觉,以及“灵魂出窍”的幻觉,特别是在朦胧的睡眠中是这样。

有一名航天员,睡眠时习惯将手臂放在睡袋外。一次在他将要睡醒时,朦胧中发现有两个怪物正迎面向他飘来,吓出他一身冷汗。定过神来后,才知道那两个“怪物”原来是自己的两条手臂。在那以后,规定航天员睡眠时应将手臂放在睡袋内,如果非要放在睡袋外,应将双臂绑住。绑住手臂的另外一个作用是,不让手臂在睡梦中碰着仪器设备的开关。

航天医学工作者除在技术层面上对失重环境中的睡眠进行研究外,也对睡眠的本质和作用进行研究。如美国曾对“天空实验室”上航天员的睡眠进行过测量,了解到失重环境中的睡眠,与以往的睡眠研究将睡眠划分的6个阶段相符,只是较深度的睡眠阶段(第三个阶段)较长,醒来的次数较少。

现代睡眠研究认为,睡眠的过程是在慢波睡眠和快速眼部活动睡眠两种状态之间切换。对睡眠的作用是休息还是复原,是储存能量还是处理信息,则尚在争论之中。深入对失重环境中的睡眠进行研究,或许能为解开睡眠之谜提供线索。

有趣的太空睡袋

睡眠是人的生命活动的重要组成部分。人在一生中有将近1/3的时间在睡眠。

在太空失重环境中,航天员不能躺在床上睡觉,因为身体会自动飘浮起来,必须钻进睡袋并固定在航天器的舱壁上。

在载入航天的初期,睡眠条件比较差,航天员只能在座椅上睡觉。为了防止无意中手碰错开关,睡觉时要求把双手束在胸前。后来,随着载入航天器体积的增大,睡眠条件才有了改进,航天员可以在左右躺椅下面的睡袋里伸直双腿自由飘浮着睡觉。但这也不是舒适的睡眠姿势。有位美国航天员说:“当你在睡眠中发现自己身体下面没有任何支撑的东西时,你会有一种掉进万丈深渊的感觉。”这种危险感一直到美国“天空实验室”轨道空间站飞行时才消除。因为“天空实验室”比“阿波罗”飞船宽敞得多,航天员吃饭和睡觉的地方是分开的,使航天员感到好像在地面上一样。

航天飞机比“天空实验室”又有改进。机上的机械设备发出的噪声小多了,仅有一种很低的嗡嗡声。航天员有了卧铺。在卧铺上睡觉,可以进一步减低噪声,还可以防止其他航天员的干扰。可惜许多航天员不习惯卧铺。有位欧洲航天员说,当他在下铺上睡觉时,感到好像在床底下睡觉一样。因此他们有的愿意在驾驶舱的座椅上打盹,有的则在睡袋里休息,也有的躲在两层甲板中间的空格里打瞌睡。

随着航天技术的发展,航天员进入太空的人数和次数不断增加。航天员在太空停留时间越来越长,因此太空睡袋就成了航天员必备之物。太空睡袋的设计必须考虑太空环境特点,为了使航天员在太空睡得舒适,睡袋必须有固定器件,使太空睡袋能紧紧固定在航天器(飞船或航天飞机)的舱壁上,不致在太空自由飘浮,似躺在床上一样舒适;由于失重,太空睡袋设计给航天员适当的压力,使航天员感觉到像睡在地面一样舒适。

由于太空中没有上下前后左右之分,航天员站着睡、躺着睡还是倒着睡都一样。在太空睡眠,多数航天员觉得身体稍微蜷曲成弓状,比完全伸直或平躺着要舒服得多。手臂可以放在睡袋内,也可以伸出外面,任其自由,不过多数航天员不愿意让自己的手臂自由飘动。而放进睡袋里。

飘浮在半空中睡眠是别有情趣的事。有的航天员愿意领略一下这种滋味,他们用一根绳子将睡袋的一端吊挂在舱壁上,让睡袋在半空中飘来飘去。不过大多数航天员不喜欢这种睡眠方式,因为当航天飞机或其他航天器的姿态控制发动机(用于控制航天器姿态的发动机)开动时,睡袋如果挂在半空中,就会与舱壁相碰撞。大多数航天员喜欢将睡袋紧贴着舱壁睡觉,这样就会使人感到像睡在床上一样。采用这种睡眠方式,后背可以伸直,有利于预防腰背痛。

经过上百次航天飞行,欧洲航天局设计出一种新式睡袋,在袋的外面有一些管道,当管道充气时,睡袋被拉紧,从而向人体施加一定压力。这种压力可以使人感到像在地面睡眠一样舒适,而且还可以消除一种飘飘然似的自由下落感,让航天员在太空睡个好觉。