第一章 神秘宇宙的基本知识

1.世间万物的形成

空间、时间、物质--都是在137亿年前的一个“大爆炸”中诞生的。那时的宇宙是一个无比奇异的地方。那里还没有行星、恒星或星系,有的只是一团基本粒子,充斥其中。此外,整个宇宙还没有一个针孔大,而且难以置信地热。这个宇宙立刻开始膨胀,从这个出人意料的怪异起点,逐渐扩展,直到演化成我们现在看到的样子。

现代科学还不能描述或解释大爆炸之后10-43秒内发生了什么事情。这个时间间隔:10-43秒,被称为普朗克时间,是以德国科学家麦克斯·卡尔·恩斯特·普朗克的名字命名的。普朗克首先引入了这样一个概念:能量不是连续可变的,而是由具有特定能量的“单元”或者“量子”构成。量子理论是现代大部分物理学的基石,它从最小的尺度上处理宇宙问题,而且被列为20世纪理论科学的两个伟大成就之一。另一个是爱因斯坦的广义相对论,处理极大尺度--天文尺度上的物理学。

尽管在它们各自的领域里这些理论都被实验和观测完美地验证了,但是调和这两个理论的努力却遇到了很大的困难。特别是,它们对时间的处理方法根本不同。在爱因斯坦的理论中,时间是一个维度,是连续的,所以我们从一个时刻平滑地过渡到下一个时刻,而在量子理论中,普朗克时间就代表着一个基本的极限:时间具有一定意义的最小单元,同时这也是在理论上能够测量出的最小时间单元。如果我们制造出最为精确的钟表,会发现它会不规律地从一个普朗克时间跳到下一个普朗克时间。

试图调和这两种截然对立的时间观念是21世纪物理学面临的主要挑战。近年来在“弦理论”和“膜理论”方面进行了这种尝试。就现在来说,量子物理主宰着紧邻大爆炸之后的灼热致密的微小宇宙阶段。我们对宇宙的科学研究就从大爆炸之后10-43秒开始。

大爆炸的概念与直觉相反,我们的常识似乎更易接受一个静态无穷的宇宙观念。但是确有科学理由让人相信大爆炸这个奇异的事件。如果我们接受大爆炸,就有可能看清整个事件的进展过程,从第一个普朗克时间开始,直到我们生活在地球上的现在。

2.时间的开始

让我们回到紧邻大爆炸之后宇宙的那个起始点。通常我们脑海中会闪现出这样一幅场景:在一个广阔的空间里宇宙突然地爆发了,但这是完全错误的。大爆炸的真实情景是:空间、物质以及更为关键的时间,都是在这里同时产生的。空间不是从虚无中产生的,在创世之前并没有虚无。在大爆炸之前时间也还没有开始,甚至谈论大爆炸前的某个时刻也是没有意义的。即使莎士比亚或者爱因斯坦也无法用通常的语言来描绘这一情景,虽然他们拥有非凡的智慧。

这也意味着当我们今天考察宇宙时,询问“大爆炸”是在哪里发生的这个问题是没有意义的。空间自身也是随着大爆炸产生的。因此,在大爆炸刚发生后的时刻,我们现在所见的整个宇宙蜷缩在一个极小的区域,比一个原子核还要小。大爆炸发生在每一个地方,这里没有“爆心”。

对这点的一个很好的直观描述是埃舍尔的一幅着名画作,虽然它的名称比较乏味:三维空间的分割。想象你站在任何一个位于网格交叉点的立方体上,每一个接到立方体上的直杆都延伸出去。在你的视野中所有的东西都从你这里延展出去,所以很自然地会首先感觉到自己正是位于一个特殊的地点:扩展的中心,但随后你就能意识到无论你位于网格的哪一点,看到的直杆向外扩展的景象都是一样的,事实上并没有一个中心。宇宙的情况与此非常类似:每一个星系群看起来都在远离我们而去。如果有一个观测者在这些遥远的星星上回望我们,他也会看到同样的景象,也可能同样地以为自己位于扩张的中心。

另一个经常被提到,而且乍看起来很有道理的问题是“宇宙有多大”。这里我们又遇到了一个大问题,就是有两类可能的答案:宇宙是有限的,还是无限的?如果是有限的,那么它的外面是什么?实际上这个问题是没有意义的。因为空间自身仅存在于宇宙之中,所以从字面上来说根本就没有“宇宙的外面”。另一方面,当我们提到宇宙是无限的时候,实际指的是它的大小是无法限定的。我们无法用日常的语言来解释“无限”,而且我们知道爱因斯坦也做不到--因为帕特里克曾经问过他!

还需要记住,我们要把时间看作是坐标中的一维。也就是说,不能简单地问“宇宙有多大”,因为答案会随时间变化。我们可以问“宇宙现在有多大”,但随后我们会看到,相对论的一个结果就是不可能定义一个普遍适用于整个宇宙的叫做“现在”的时刻。

谈论具有有限大小的宇宙立即会使人联想到边界。如果我们走得足够远,会撞到一堵砖墙吗?答案是否定的。宇宙具有数学家们所说的“有限而无界”的性质。一个有用的类比是一只在圆球上漫步的蚂蚁。要是它在这个弯曲的表面上一直朝着一个方向前行,就永远也不会遇到障碍,能够游荡无穷的距离。所以虽然球的尺寸是有限的,但蚂蚁觉察不出来。类似地,如果我们登上一艘无比先进的飞船沿着直线航行,我们也永远不可能到达宇宙的边界,但这并不意味着宇宙是无限的。随后我们还会看到空间也可以被看作是弯曲的。

让我们把自己限定在能够做出科学回答的问题上,即能够通过和观测结果对比来回答的问题。我们可以确定地说可观测的宇宙(顾名思义,即发出的光线有可能到达我们的那部分宇宙)在尺寸上是有限的。因为我们目前最好的估计是宇宙的年龄为137亿年,这样可观测宇宙的边缘(从那里发出的光刚刚到达我们)离我们有137亿光年远,而且还在以每年1光年的速度扩展。实际上后面还要谈到为什么我们永远不可能看到这么远。宇宙一定比我们能看到的要大,这是我们能够确定回答的全部。

3.宇宙的尺度

说一个目标在离我们137亿光年之外当然很准确,但我们能真正地去理解宇宙的这种尺度吗?我们很容易感受例如从伦敦到纽约的距离,甚至从地球到月球的距离(约38万千米),这几乎是10倍于地球上的环境。有很多人在他们的一生中曾经乘飞机飞行过比这还长的距离,事实上有些航空公司会给予那些乘坐航班累计超过160万千米的乘客以某种特权。但你如何去想象1.5亿千米--从地球到太阳的距离?当我们考虑最近的恒星,离我们4.2光年(约40万亿千米)时,这个距离是很难想象的。而星系更遥远得多。银河系最近的邻居仙女座星系距离我们有200万光年之远。

在尺度的另一个极端,想象一个原子的大小同样地困难,任何普通的显微镜都无法看到单独的原子。有这样一种说法:从量级上看,人正处于从原子到恒星的尺度范围的中间。有趣的是,这也正是物理规律最为复杂的地方。在原子世界,我们应用量子物理学;在宇宙尺度,应用相对论。在这两个极端之间,我们对如何调和这些理论的困惑暴露无遗。牛津科学家罗杰·彭罗斯坚定地写下了他的信念:我们对基本物理原理所缺失的理解力,也是我们对人类意识所缺失的理解力。当我们思考所谓的人择原理--归纳起来就是宇宙的演化必然保证我们能够存在并认识它--时,这个观点尤为重要。

另一个有用的问题是,宇宙中有多少原子?一种估计给出的总数高达1079个原子,即1后面跟着79个0。

传统上我们把原子看成由三类比较基本的粒子组成:质子(带单位正电荷),中子(不带电)和质量小得多的电子(带单位负电荷)。顺带说一下,在原子层次精确定义什么是电荷远非那么简单。可以把电荷看作是粒子的属性之一,就像大小和质量一样。电荷总是以固定的粒度出现,我们称之为单位电荷。

根据经典模型,原子就像一个小型太阳系,电子环绕中央的原子核旋转,由质子和中子组成的复合的原子核带有正电荷,并且和环绕的电子的总负电荷严格抵消。在我们的太阳系中,行星被引力保持在环绕太阳的轨道上;在原子中,是带负电荷的电子和带正电荷的原子核之间的电磁吸引力使得电子环绕原子核旋转。

过去,我们注意到这个简洁的模型可以解释很多基本的化学现象,比如,为什么原子的外层电子容易参与化学反应:因为它们离核较远,吸引力的约束较小。所以最简单的原子--氢原子,只有由一个质子构成的原子核和一个电子组成,整个原子是电中性的:正1加负1等于零。所有原子都具有相同数目的电子和质子。每种元素内这种粒子的数量是唯一的,称为原子序数。比如氦原子有2个质子和2个电子,所以它的原子序数是2。而碳原子的序数是6。重元素含有数目众多的电子和质子。地球上最重的自然元素--铀的原子序数是92。

在20世纪早期,把质子和中子看成坚实颗粒的观点甚为流行。但这个图景今天已经变得不那么清晰了。面对很多甚小系统的奇怪行为时,把它们看作由波动而非颗粒构成能够更好地进行解释。这个理论叫做波粒二象性。此外实验显示,电子看起来确实是不可分割,而质子和中子事实上并不是最基本的。它们能被分解成更小的颗粒,叫夸克。夸克现在被认为是最基本的。没有人曾经看到过夸克,但我们知道它们一定存在,因为在粒子加速器中检测到了。人们建造了粒子加速器,以不可思议的高速度把质子打碎,从而探测到夸克。在这些实验中质子似乎破碎了,所以科学家断定质子不是最基本的。自然界不喜欢形单影只的夸克,所以它总是成双或成三地出现。

4.宇宙的暴胀

现在流行的解决方案在一定程度上增加了大爆炸理论的复杂度。大多数宇宙学家们现在相信曾有一个异常短暂的快速膨胀期,称为暴胀。在大爆炸后10-35秒到10-32秒之间,宇宙扩展了几十亿倍。在暴胀阶段的最后,膨胀回到了一个比较稳定的速度,和今天观测到的一致。

如果没有暴胀时期,我们所看到的宇宙中相对侧的区域就既没有时间来交换热量,也没有可能达到充分的平衡。假设的这种快速膨胀使我们能够认为宇宙开始时要小得多,从而可以在加速膨胀开始之前达到温度均衡。剩余的少量不均匀性被尺度上的巨大增加所消除。这个迷人的快速暴胀带来的一个结果就是我们所观测到的区域只是整个宇宙的极小的一部分。即,我们只能观察到实际上是我们周围局部的一点变化,而这注定是非常有限的。用一个日常的比喻,我们知道地球从珠穆朗玛峰峰顶到最深的海沟的底部有很大的高度变化。暴胀的等价效果就是把你脚尖下的一小块地方扩展到整个地球这么大,或者等效地把我们缩小到比最小的病毒还小很多的地步,那么在我们能够到达和探索的范围里,高度的变化将是微乎其微的。对于宇宙中的温度起伏,暴胀也带来了同样的效果。

但是为什么在婴儿期宇宙膨胀速度会如此突然地急剧增加?看起来需要引入一种新型的力,它和引力起的作用相反,来对这种巨大的加速负责。科学家已经开始研究这种力应该具备什么样的属性,但还没有得出明确的结论。就我们所知,暴胀发生前的宇宙环境并没有任何特别之处,故而这种加速力的突然出现和消失显得多少有些随意。但是它的存在确实使我们能够处理宇宙同谋的问题。

引入暴胀之后还能为我们解决哪些问题呢?暴胀还能解释我们今天观察到的宇宙中的另两种现象。没有暴胀,那么这两种现象根本无从解释。首先,根据粒子物理的标准理论,一种被称作“磁单极子”的粒子应该能够偶尔被探测到。但实际上,我们从未探测到磁单极子。这无疑需要某种解释。暴胀理论使我们能够争辩,因为这种粒子分布得太稀疏了,所以探测不到并不令人惊讶。比如,为了辩论我们假设在大爆炸中产生了100万亿个这种粒子,那么我们会感到奇怪为什么一个都没有发现。但是如果同样数目的粒子被散布在比暴胀之前大几十亿倍的宇宙中,那么在我们可观测的宇宙范围内找不到这种粒子就很有可能了。暴胀的力度是如此之大,就在它起作用的短暂时间里,它所产生的宇宙也比传统大爆炸理论所预计的大了不知道多少倍。暴胀为这些失踪的粒子提供了一个解释:它们被过度稀释了。

5.自然界中的力

夸克的这种性质的起因与把夸克约束在一起的力的不同寻常的性质有关。这种力被称为强核力不是无缘无故的,它只在极小的尺度内才占主导地位,所以我们需要使用非常强大的粒子加速器才能使质子分裂。不像我们在大尺度环境中所熟悉的力--例如引力或异性电荷之间的吸引力那样,强力随距离的增加而增加。换句话说,如果我们能够分开两个夸克,会发现分离的距离越大,两者之间拉回的力就越大。最终,当夸克分开到一定程度,造成这种形变所注入的能量是如此之大,以至于能量转化为质量,产生两个新的夸克。这样猛然间我们获得了2对夸克,而不是事先希望的把夸克单独隔离开。这个过程意味着我们在实验中从未产生过独立的夸克。在日常世界中,夸克只作为其他粒子的组分而存在,例如质子和中子中各含有3个夸克。

在刚刚大爆炸后极端高温的宇宙中,夸克具备足够的能量自由地运动。因此,通过理解最大尺度上的宇宙过程,可以增加我们对最小尺度上的粒子的了解。每个粒子在宇宙初期获得的能量比我们在粒子加速器中所能制造的高得多。即使我们建造一个和太阳系一样尺寸的加速器也不可能产生如此巨大的能量。

值得注意的是,当前我们通过粒子物理对微观世界的研究,和通过宇宙学对极大尺度的宏观世界的认识是紧密交织在一起的。为了了解整个宇宙,我们要依靠对于基本粒子的认识,而我们进行此项研究的最好的实验室就是处于萌芽期的宇宙。一个充满了高能基本粒子的炙热空间,是我们想象到的新生宇宙的最早景象。

6.宇宙越大越冷

在第一个普朗克时间之后,微小而炽热的宇宙不可思议地开始膨胀,也开始逐渐冷却下来。宇宙是一个沸腾的夸克的海洋,每个夸克携带着巨大的能量以极高的速度在运动,结果是当时没有我们现在看到的这些原子和分子的形态,因为这些复杂的结构是不可能抵御极高温度的分裂力的。夸克的能量太高,无法被捕获和限制在质子和中子内。事实上在宇宙的婴儿期,夸克可以自由飞驰直到与一个邻居相撞。除了夸克,这种早期的亚原子粒子的浆汁中还含有反夸克--除了带有相反的电荷,和夸克完全相同。现在人们相信每种粒子都有对应的反粒子,除了所带电荷外其他特性完全一致。电子对应的反物质粒子是正电子,带有正电荷,其他方面和电子相同。在科幻小说里反物质的概念很常见,它们是无数极为先进的星际飞船发动机的基础,所有这些都来自一个实验事实:当一个粒子和对应的反粒子相撞时,两个粒子都会湮灭,同时释放出巨大的能量。如果在原始宇宙中一个夸克与一个反夸克相遇,它们就会消失,同时发出辐射闪光。反向的进程也会发生,足够高能的辐射(当然是在宇宙演化的早期阶段的能量水平)可以同时产生一对粒子,包含粒子和它的反粒子。这个时期的宇宙充满了辐射,辐射产生粒子对,粒子又极快地在互相碰撞中湮灭,并把能量转移回背景辐射。

贯穿整个时期,宇宙持续地膨胀和冷却。经过第一个1微秒(仅仅10万亿亿亿亿个普朗克时间),当温度降低到约10万亿度的临界值以下时,夸克的运动速度降低到能够被它们之间的相互引力(强力)所捕获的程度。三个一组夸克聚集到一起形成了我们熟悉的质子和中子,总称重子;而反夸克聚集成反质子和反中子,总称反重子。如果重子和反重子的数量是相等的,那么极有可能它们之间的碰撞会使得重子全部湮灭。而当宇宙膨胀时,辐射的能量被稀释,不再能够产生新的粒子,这样宇宙中的物质就不可能留存到现在。

仅仅由于从一开始就存在的一点微弱的不平衡挽救了物质,使得我们今天得以存在,使我们能够在这里思考很久以前发生过什么。出于我们至今尚未知晓的原因,每十亿个反重子会对应十亿零一个重子,所以在最初的混战结束后,几乎所有的反重子都消失了,留下的残余的质子和中子形成了今天的原子核。

7.宇宙的同谋论

让我们暂时回到现在。想象两个从地球上看去处于相反方向上的距离我们90亿光年的星系,它们之间的距离是180亿光年。泛泛而言,在最大的尺度上,它们身处的宇宙区域看起来是一样的。其中一个可能位于星系团的中心深处,就像我们附近的室女座星系团,另一个可能孤立得多;但是在第一个星系团附近会有孤立的星系,而在第二个星系的附近则不可避免地存在着星系团。所以每个区域都有相同比例的相同类型的星系,而且本地的温度也是一样的。

这就产生出一个被称为“宇宙同谋”的问题。宇宙年龄目前最好的估计是137亿年,不到180亿年,所以光还没有足够的时间从一个星系传到另一个星系。而根据相对论,光是宇宙中最快的东西。如果连光都没有时间穿过两个区域中间的空间,其他任何事情也不可能发生,没有任何东西能够从一个区域传递到另一个,所以两个区域之间的任何差异都无法消除。但是,无论我们朝哪个方向看,宇宙似乎都一样,有同样类型的星系,几乎按照一样的模式分布,好像它们曾经互相商量过一样。这个事实变得令人不解,被称作“宇宙同谋”。

为什么这会成为一个问题?难道宇宙在各个方向上看起来一样不是很自然的事情吗?也许有某个现在还不为人所知的规律在支配大爆炸的物理变化,保证只有几乎是均匀的宇宙才能产生。但是现在我们还没发现有任何物理理论能够预言这一现象的迹象,所以至少需要考虑如下的可能,就是宇宙诞生之时不同区域之间可能存在巨大的温度差异,比如在早期宇宙中,一半的温度可能是另一半温度的两倍。那么这样如何产生我们现在观察到的宇宙的均匀性呢?热量没有时间流动到宇宙中冷的部分,甚至没有时间在两个区域之间以光速发送一个消息。在这种环境下,原始的不平衡不可能被修正;而实际上,这些互相远离毫无关联的区域却是非常相似的。

我们的两个星系现在是互相远离。但是宇宙在非常年轻时要小得多,而在两边的物体有可能互相接触从而交换热量,达到今日所见的均匀性。现在的问题是,这个早期阶段的宇宙到底有多大?出乎意料地,答案相当简单。

到目前为止我们只讨论过一种能够在天文距离上起作用的力,就是万有引力。它本质上是一种把物体拉到一起的吸引力。引力本身会减缓膨胀的速度。我们可以尝试从现在反推出宇宙的大小随时间是如何变化的,而我们发现宇宙同谋的问题一直到早期宇宙都存在。换句话说,宇宙从来没有小到过能够让光从一侧运动到另一侧的程度。所以从来没有小到能够使得温度差被平坦掉的程度。这个推论是建立在引力是唯一影响膨胀速度的力的基础上的,所以如果我们要解决同谋问题,就必须放弃这个观点。

8.宇宙的多维空间

宇宙空间究竟有几维?

神秘的宇宙和人类的经验世界如此不同,我们所能感受的三维世界也许只是宇宙中多维空间的一个小岛。近日,东京大学上演了一场爆棚演讲。主讲人哈佛大学理论物理学教授丽萨·兰道尔的到场,让所有听众躁动起来——不仅因为她的美貌,更因为她给人们呈现了一个超乎想象的多维世界。

第五维空间在哪里?

哈佛大学理论物理学教授丽萨·兰道尔,是近年来理论物理学界的佼佼者。1999年,她和同事拉曼·桑卓姆发表了轰动一时的两篇论文,至今,这两篇论文的引用率在理论物理学界仍排名第一。根据论文建立的模型,她假设了宇宙中存在着超越我们所处的四维(长、宽、高组成的三维空间+时间)时空之外的第五维或更多维的宇宙空间。这一理论也恰好解释了,困扰科学界多年的引力相比其他3个基本力羸弱不堪的原因。

科学家发现,宇宙基本由4种力相互作用而成。它们是引力、电磁力、强力和弱力。引力源于物体质量的相互吸引,两个有质量的物体间存在引力;电磁力是由粒子的电荷产生的,一个粒子可以带正电荷,或者带负电荷,同性电荷相斥,异性电荷相吸;强力主要是把夸克结合在一起的力;弱力的作用是改变粒子而不对粒子产生推和拉的效应,像核聚变和核裂变这两个过程都是受弱力支配的。(注:人们普遍认为,物质是由分子构成的,分子是由原子构成的,原子由电子、质子、中子等基本粒子组成,而基本粒子则由更基本的亚粒子组成。这种亚粒子也就是人们常说的“夸克”。)

令人不可思议的是,这4种基本力的相对强度以及作用范围都有巨大区别。从相对强度上来说,假定以电磁力为一个单位强度,则强力要比这个单位大100倍,弱力只有这个单位的1/1000,引力小到几乎可以忽略不计:在微观世界中,它只有电磁力的1/1040(10的40次方)!从范围上看,引力主要体现在宏观世界,其他3种基本力主要在微观世界起作用。

也许你并不觉得引力微不足道,至少当我们从高处坠落时,那可不是闹着玩的。但是同电磁力比起来,它的确相当“虚弱”,比如,整个地球产生的引力作用在一根针上,只不过是让它在桌子上安静地躺着,我们拿起一小块磁铁便能将它轻松吸起。奇特的是,引力在宇宙中却能左右巨大星系的运转。

对此,兰道尔的理论模型给出了解释:“我们假设引力存在于与我们所处的三维时空不同的另一张膜上,而引力膜和我们所在的膜之间,被第五维空间或更多维空间隔开。其他3种基本力被限制在我们的膜上,而引力则在宇宙中均匀分布。对我们这样的三维空间来说,它的强大力量从宇宙中多维空间中‘泄漏’出来后被大大弱化了。”

若果真如此,那么五维或多维空间究竟在哪儿?它们又如何不同于我们的三维空间世界?

为什么会有多维空间?

事实上,是否存在多维空间的猜想,早在1920年就被爱因斯坦的“粉丝”德国数学家卡鲁扎提出过,后来经过瑞典理论物理学家克莱茵的改进,成为“第五维度”的思想,并被后人统称为卡鲁扎-克莱恩理论(或KK理论)。遗憾的是,这个理论最终未能自圆其说,只能不了了之。

后来,相对论和量子理论——这两大现代物理理论基石相继诞生,有趣的是,二者之间不能通用且充满矛盾。

爱因斯坦的广义相对论是关于引力的理论,他认为空间是有形状的,当没有任何物质或能量存在时,空间是平直光滑的,当一个大质量物体进入空间后,平直的空间就发生了弯曲凹陷。这就像在一条绷紧的床单上放一个保龄球,床单马上就凹陷下去,而所谓的引力就是通过这样的空间弯曲而体现的。为什么地球会绕着太阳运行?因为地球滚入了太阳周边弯曲空间的一道“沟谷”。而如果物体质量太小,空间弯曲几乎为零,也就感受不到引力的作用。因此,人和人之间,甚至建筑物等普通物体之间的引力作用可以忽略不计。

但相对论的空间几何形状变化,解释不了其他3种基本力——电磁力、强力和弱力的作用原理。在微观世界里,空间根本就不是平滑的,无数的粒子在永不停息地剧烈运动,可见,广义相对论的平滑空间前提在这里讲不通。

而量子理论却能解释这3种力的行为:量子理论认为,宇宙中所有的物质最终由数百种不同的基本粒子组成,而力则是由粒子的交换而来的。但粒子交换也不能解释引力现象,因为在微观世界里,粒子的自身质量不仅小到几乎没有,还总在杂乱无章地运动,它们之间的引力又从何谈起呢?

相对论和量子理论的尖锐矛盾,使科学家不得不另辟蹊径。上世纪60年代,一个崭新的理论——超弦理论出现了。超弦理论认为,在每一个基本粒子内部,都有一根细细的线在振动,这根细细的线被科学家形象地称为“弦”。依照弦理论,每种基本粒子所表现的性质都源自它内部弦的不同振动模式,弦的振动越剧烈,粒子的能量就越大;振动越轻柔,粒子的能量就越小。振动较剧烈的粒子质量较大,振动较轻柔的粒子质量较小。而所有的弦都是绝对相同的。不同的基本粒子实际上在相同的弦上弹奏着不同的“音调”。由无数这样振动着的弦组成的宇宙,就像一支伟大的交响曲。不过,弦的运动是十分复杂的,以至于三维空间已经无法容纳它的运动模式。

在今天的超弦理论中,科学家已经计算出十维空间结构(还有些方法甚至计算出了二十六维)。而空间的维数越高,越能容纳更多的运动形式。由此,宇宙的时空维数是高维的,三维空间仅仅是一种最简单的情形。

三维以上的空间是隐匿的?

如果真有十维空间,我们为什么只能察觉到三个维度呢?除了时间维度之外,另外六个又在哪里?

一些科学家认为:计算出来的空间维度不一定和经验维度相同。或许另外六个维度的空间以某种方式隐匿起来,人在日常生活中难以察觉。记得获得1979年诺贝尔物理学奖的美国物理学家格拉肖曾抱怨过:“我总是被那些搞超弦理论的人打扰,因为他们从不谈一些和真实世界有关的事。”

对这个问题,兰道尔倒是泰然处之,她最近提出了一个“放松原则”:想太多不如什么都不想!“看看我们的宇宙,它一路走来,始终如一。当宇宙处于大爆炸前的初始状态时,存在多少维度都有可能。大爆炸发生后,宇宙在不断地膨胀,它会自然而然地、随时充填需要的维度,直到稳定下来。”根据兰道尔的计算,在宇宙膨胀过程中,三维和七维的宇宙处于相对稳定的状态。因此,“宇宙在演化过程中,自然会呈现出稳定的三维和七维形式。三维空间存在的范围是最大的,这也就是为什么我们只能察觉到今天这个三维空间构成的世界。”

当然,“如果这还满足不了你的好奇心,你也可以把多维宇宙想像成一次买房的经历。当你选择房子的时候,你不仅会看房子的空间大小,还要看它的结构、质量、地理位置、升值潜力等各种因素,这些因素就好比宇宙的其他空间形式。”

9.宇宙中光的产生

在暴胀这一灾变时期后的30万年里没有什么大的变化发生。支配宇宙演化的物理环境几乎保持不变。宇宙成为一个变动不那么剧烈的地方。随着温度的降低,质子和中子的速度也减慢了。但就像我们将要看到的那样,物质和辐射依然混合在一起。从我们的观点看,这一时期的宇宙和今天看到的最初的恒星宇宙间的最大差异是,在这极早期阶段,宇宙是完全不透明的。

包括可见光在内的电磁波也可以看成是光子流。光子是一种没有质量的粒子,以每秒30万千米的速度运动。在量子力学(可能是现代科学中经过最好验证的理论)的奇妙世界中,我们不再能够明确地区分“波”和“粒子”,而要接受任何物质都会表现出介于两者之间的“波粒二象性”。就像我们传统上认为是粒子的那些实体--例如电子和质子--一样,光在某些时刻也表现得像一个粒子,叫做“光子”,而在其他时候像一个波。

每个光子都携带一份确定的能量,能量大小由光的颜色决定,所以确实可以说电磁波是一个光子流。现在让我们追踪其中一个光子的轨迹。它可能产生于极早期宇宙中的一次质子和反质子的碰撞。在这种非常密集的环境中,这个光子走不了多远就会碰上一个电子并被吸收掉,而电子则获得了能量。其后,光子可能又被发射出去,但这时和它原来的方向已是毫无关系了。这个过程在不断地重复,其结果是光子在任何方向上都走得很慢。

但是当宇宙在大爆炸后30万年,恰好冷却到3000度时,一个突然的变化发生了。在这个临界时刻之前,电子这种组成普通原子物质的最轻,因而也是运动最快的粒子,运动得太快,以至于较重的原子核无法将其捕获。但到了3000度的温度时,它们就再也无法逃脱原子核的捕捉了,最初的中性原子产生了。从原子的尺度上看,被捕获的电子在一个很远的距离上环绕原子核,但如果与原子间的距离相比,电子离原子核是极近的。这样,新形成的原子之间的空间变得空旷了,光子突然能够不受阻碍地运动很长的距离。换句话说,物质和辐射分离开来,在大爆炸后30万年,宇宙变得透明了。

光的屏障

我们已经知道在微波背景辐射产生之前宇宙是不透明的,光线无法在里面传到远方。就像在地球上没法看到云层里面一样,我们也没法看到这一时刻以前的情况。这个类比不完全准确,因为云朵自身不发光。太阳是一个更好的例子。从外面看,太阳有一个确切的表面:光球,但实际上我们看到的仅仅是物质开始变得透明的那个边界。光球内,气体是如此炽热、明亮和密集,光子无法不受碰撞地穿透出去,就像紧接着大爆炸后的那段时间一样;光球之外,气体变得透明了,光子能够自由地穿越,就像宇宙刚刚变得透明的那一时刻--宇宙微波背景产生的时刻。

要看透云层,我们有一个替代方案:无线电波可以轻易地穿过云层,所以可以得到云层之外或者云朵里面的信息。这种技巧在宇宙微波背景这里不起作用。30万年是对所有电磁辐射的限制,似乎是难以克服的障碍。那么我们怎么能够在前面如此自信地描述在这一时刻之前的那些情况呢?此时我们需要依靠理论。这些理论中有许多曾成功地预言了微波背景辐射是什么样子,这样我们就能够将理论和实际的宇宙微波背景作比较,得出合适的结论。

但更为理想的当然是我们希望能够越过这个障碍看到过去。为了达到这个目标出现了不少想法。比如去探测那些在微波背景辐射时代之前就幸存下来、未曾变化的高能粒子。现在已经开始寻找这种以微小的、几乎无质量的中微子或其他怪异的物质形态出现的粒子。但真正能够探测到并确定其来源的中微子望远镜,还有待建造。

光谱

艾萨克·牛顿爵士首次将一束阳光穿过一只玻璃棱镜,证明了阳光是由从红色(长波长)到紫色(短波长)的各种波长的光线的混合。他把阳光通过小孔和棱镜,射出后形成一条彩色光带,这是首个有意制成的光谱。牛顿并未做进一步的实验,可能因为那时棱镜的玻璃质量欠佳,无疑更为可能的是还有其他的事情正等待他去考虑。下一个真正的进展来自英国科学家W.H.渥拉斯顿。1801年,渥拉斯顿在屏上用一道狭缝代替了小孔,得到了里面横跨着许多暗线的带状太阳光谱。渥拉斯顿认为这些线仅是各种颜色之间的分界,从而与一项重大发现失之交臂。十多年后,德国光学家约瑟夫·夫琅禾费做到了这点。

像渥拉斯顿一样,夫琅禾费获得了太阳光谱。他把暗线描画下来,发现它们的位置和强度是不变的。例如在光谱黄色的部分有两条非常明显的暗线。这些线条是如何形成的?1858年古斯塔夫·基尔霍夫和罗伯特·本生给出了答案,同时奠定了现代光谱学的基础。

就像望远镜收集光线一样,光谱仪把光分解成彩虹样的光谱。观察发光的固体或者液体的光谱,你可以看到彩虹似的连续谱带;而低压气体的光谱却大不一样,与一条彩带不同,只能看到分立的亮线,即发射光谱。基尔霍夫和本生发现,每条谱线都是某种特定元素或者元素组合的标志,而且不会重复。例如钠会产生2条明亮的黄线以及其他亮线。有些元素的光谱比较复杂,比如铁有数千条谱线。而他们伟大的洞察力在于,发现太阳光谱中的暗线和实验室里发光气体光谱中的亮线是一一对应的。现在知道每条谱线都产生于气体原子外层电子某个特定的状态跃迁。如果气体很热,电子的能级降低时就会放出能量,我们就能看到发射线;如果气体较冷并且背景光是像阳光那样的连续谱的话,我们就会看到一条暗线,因为电子在相同的频率上吸收了能量,并跃迁到上面的能级。在太阳光谱黄色部分里的那一对特殊的暗线就是相对较冷的钠蒸汽存在的明确迹象。通过对这些夫琅禾费线的研究,可以得到被称为“反变层”的太阳内层大气中所有气态元素的丰度。

被称作夫琅禾费线的这些暗线还可以提供运动的信息,继而间接地告诉我们天体的距离。注意一下救护车鸣笛的声音。与静止时相比,当汽车朝我们开来时,每秒钟内有更多数量的声波进入耳朵,其效果是波长变短了,所以声调听上去越来越高;而当汽车经过后驶离我们时,每秒钟进入耳朵的声波数减少,波长增大,所以音调变低。奥地利科学家多普勒首先对这种现象做出了解释,后来这种现象被称为“多普勒效应”。对光来说也存在同样的现象。对于一个正在靠近的源,波长的缩短令光线变蓝;对于正在退行的源,光线变红。这种颜色变化极其微弱,难于察觉。但是会在夫琅禾费线中有所反映。如果所有的谱线都向红端,即长波长端移动,那么光源就正在远离我们。红移越大,退行速度就越大。

现在回到太阳光谱。太阳的明亮表面,即光球,产生连续光谱。其上的是一层压力低得多的大气(色球层),所以预计应该产生发射光谱。事情也确实如此,然而在一个明亮的彩虹背景的映衬下,这些谱线被“反转”了,看上去不是亮的,而是暗的。但是它们的位置和强度不受影响。日光光谱黄色部分的两条暗线对应着钠的发射线,所以我们断定太阳上存在钠。

10.宇宙大爆炸的回声

宇宙大爆炸

电子捕获进程对于宇宙的温度相当敏感,一旦温度降低到上述临界值之下,捕获过程就以惊人的速度发生。由于暴胀的原因,宇宙温度在整个空间范围内几乎完全一样,这意味着这一过程几乎在整个宇宙内同时发生,其结果是光线可以不受阻碍地穿越宇宙,使我们在134亿年后仍然能够看到这幅我们宇宙演化的特殊时刻的快照。这种观察过去某个特定时刻的景象的能力是天文学所独有的。通常当我们试图观察比较遥远的宇宙区域时,视线会被邻近的星系所遮挡,它们发出的光线还是比较近期的。宇宙变得透明这个不可思议的事件现在可以不受遮挡地观测到,我们称之为宇宙微波背景,或CMB。

无论有意无意,我们的很多读者都曾亲身感受过这种伴随大爆炸的“大火球”熄灭时的微弱回声。把电视天线拔掉或者调谐到没有频道的地方,你会看到黑白的天电干扰。这种干扰中的1%来自宇宙微波背景。在它最初发出134亿年后,仍能干扰你的电视图像。

现在,这种微波辐射的频率等效为一个平均温度仅比绝对零度高2.7K的发射机。如果这个辐射真是大爆炸自己的回声,那为什么会如此之冷?其原因是很直接的。这些辐射在发出时,宇宙的温度是3000度,在它传向我们的过程中,它所穿过的空间一直在膨胀,使得光的波长越来越长,于是表观温度越来越低。这是我们首次遇到这种叫做红移的现象,它具有极端的重要性。

宇宙微波背景的发现为大爆炸理论的若干预言提供了强有力的支持。例如,发出的辐射与一个黑体的特征相符合。黑体是一个假设能吸收所有进入它的辐射的物体,如果被加热,则它的辐射能谱中任意频率上的强度只取决于它的温度。在实际应用中,我们可以据此得知发射体的性质。例如,它应该与外界的影响相隔绝。在大爆炸和30万年后的透明期之间的那个炽热、高密度和不透明的宇宙正是这样的一个发射体。理论和观测结果之间符合得是如此之好,在大多数数据曲线上,表示预测值的线宽要大于测量的不确定量。这在科学上是很少见的情况,在观测天文学中更是独一无二。

最初,辐射似乎是绝对均匀的,与方向无关。即使把我们自己的星系所发出的微波辐射造成的前景辉光减去,在宇宙微波背景上较亮的天区看上去也和其他部分几无二致。但我们今日看到的宇宙却是明显“结块”的。星系组成星系团,星系团又构成超星系团,而它们之间隔着巨大的距离。这些地方正由诸如英澳2度视场巡天计划和斯隆(Sloan)巡天计划进行详尽的检查,而且已经延伸到距离地球10亿光年之遥的地方。无论从这些观测结果中我们绘制出怎样的宇宙画像,毋庸置疑的是它绝不是均匀的,所以很清楚有什么地方搞错了。在看上去均匀的早期宇宙里,一定隐藏着生成我们今天看到的不均匀结构的原因。

宇宙背景辐射是当今天体物理学最集中研究的对象,它还能告诉我们很多东西。它标志着宇宙中最早结构的景象。最近对于宇宙微波背景更为细致的研究揭示出小于万分之一度的温度起伏。这个差异很微小,但正是形成我们今天看到的周围结构的起因。通过温度来测量物质密度差异的想法听上去有些奇怪,却有充分的理由。就像宇宙背景探测(COBE)卫星显示的那样,在发出宇宙微波背景时的物质密度不是绝对均匀的。在比平均值更为密集的区域内,引力会吸引更多的物质,这种挤压会把这个区域略微地加热,这就是我们去探测并测量到的温度起伏。

如果没有这些涨落来让引力发挥作用,那么从一个在产生宇宙微波背景时完全均匀的宇宙中形成现在看到的这种非均匀的、有疏有密的宇宙的历程就不可能完成。但是,空间中涨落的尺度也十分重要。对宇宙微波背景的观测得到的全天图中可以看出,每个蓝色(略冷)和红色(略热)的区域大小是很相似的,平均起来是1度宽,就是满月视角的两倍。根据以上事实经过缜密思考,宇宙学家们确定宇宙是平坦的。其理由是,我们的理论能够预言早期宇宙中涨落的实际物理尺寸,将期望值与实际值相比较,可以告诉我们光线自从源头发出后被弯折了多少,这取决于宇宙中物质的数量:物质越多,光线弯曲得越厉害。在封闭宇宙中,光线弯曲较显着,造成涨落区域看上去比预计的要大;而在开放的宇宙中,物质较少,所以涨落区看上去会小很多。事实上,将仿真结果与实际情况比较后发现宇宙恰恰含有临界数量的物质,因而是平坦的。

这种讨论既让宇宙学家们兴奋也令他们沮丧。兴奋的是,对微波背景的研究不仅能够告诉我们辐射发出的那个极早时刻的情况,还能揭示此后宇宙的整个历史。但问题是要想对早期宇宙得出确切的结论,就必须排除后期各种因素的影响,而这是很难做到的。

在时间上回看

和化学家或者物理学家不同,宇宙学家们没法拿到他们的研究样品并送到实验室中进行分析。但他们却有一个巨大的优势,就是可以逆着时间向回看,并且观察到研究目标在几百万年前的样子。记住,只要观测离地球越来越远的天体,就可以看到离现在越来越久远的事情。这不适用于在透明时刻前发生的事件,它们隐藏在不透光的婴儿期宇宙里。从现在起我们讨论那些有可能直接观测到的事件。

这一章的内容始于宇宙变得透明的那一刻,就是最终作为宇宙微波背景回声为我们所观测到的时刻。近期的实验,例如Boomerang,Maxima和WMAP已经证实了COBE卫星探测到的背景辐射的微弱温度起伏,我们将此解释为宇宙密度在这一时间点上万分之一的变化。而我们今天看到的这种不均匀性要大得多:既有超星系团、数千个星系聚集在一起的区域,又有几乎没有任何物质的空间。

我们自己的银河系仅是数百万个旋涡星系之一。当然可以去设想,没有任何理由怀疑这些星系或星系群是随机地分布在宇宙中的。但是对星系的大尺度巡查表明,在最大尺度上存在着许多蜂窝状的结构,包括长度有3000万光年的一条巨壁。宇宙是如何从那种早期刚刚变得透明、几乎但又不完全均匀的状态演化成现在的模样呢?

11.引力,宇宙中的力

太空引力

通常认为,在天文距离上唯一起作用的力是万有引力。对一个物体,无论是恒星、行星、一个人还是一片云,引力的强度取决于它里面包含多少物质。注意质量和重量是不同的。质量表示存在多少物质,而重量表示由于重力产生的力的大小。所以一个在地球轨道上的宇航员处于失重状态,但并没有失去质量。可以把引力定义为:使质量产生重量的力。例如,月亮是太阳大家庭中较小的一个成员,其引力小到无法保持住大气。地球质量比月球大得多,把物体吸引住的能力也强得多,所以幸运的是它保持了我们呼吸所需的大气层。类似地,早期宇宙中物质密集的区域比稀疏的区域有更大的引力,可以把周围的物质吸引过来,而这又进一步增强了它的引力。所以这一过程一直在加速,就像常说的那样:富者愈富,贫者愈贫。

在这些比较致密的区域中也存在局部的密度差异,所以有同类的过程发生。质量越大,引力越强,从周围吸引的物质聚集得越多。使用计算机能够重构当时的情景,从而建立一个比较好的模型来反映早期宇宙是如何演化成现在宇宙的大尺度结构的。

不论这种结构在哪里形成,都必须考虑两种对立的因素:从大爆炸开始的空间的膨胀和引力作用下的局部物质的收缩。一旦天体在形成过程中积累了足够的质量,它就能抵御总体的膨胀而收缩到一起。

一个星系团的始祖最开始时是很小的,其体积随着宇宙的膨胀而增加,并持续地从周围把物质吸纳过来。随着可以积累的物质的耗尽,它增长得越来越慢,直至停止扩张,这个原始的星系群达到了它最大的范围,并有能力凝聚到它最终的大小。引力随距离的增大而变弱,所以在宇宙演化的这个阶段,收缩仅可能发生在很小的尺度上。这样,还仅仅是气体团的原始星系开始形成。

12.宇宙的昏暗时代

这种聚合是什么样子的?我们什么都看不到,因为正处在被第15任皇家天文学家马丁·里斯所称的“黑暗年代”。这个时代紧接着产生微波背景辐射的时刻,当时还没有任何恒星在宇宙中发光。

当然那里还充斥着在宇宙开始透明时产生的、还没有多久的回声。这种辐射(此时应称为宇宙电磁背景辐射,而非微波背景辐射)在3000度时开始出现,这个温度和乙炔焊焰的温度差不多。因而在此期间实际上存在着逐渐变暗、逐渐变红的弥漫的辉光。所以宇宙并未彻底黑暗过,只是昏暗而已。

随着宇宙的冷却,在愈来愈微弱的辉光中,物质的引力收缩将最终形成星系。于是一个剧烈的变化发生了,大量的恒星爆发,昏暗的宇宙忽然被照亮,宇宙中充满了耀眼的光芒。这一刻来得有多突然还有争议,但无论如何,我们已经进入了开始形成最早的恒星的新纪元。

在大爆炸中,实际上只有3种元素被创造出来:氢、氦和少量的锂,其他元素的含量可以忽略。我们已知的所有其他元素都是在恒星内部形成的。人们常说:我们是星尘,这是十分贴切的。我们太阳和太阳系的物质很可能已经经历过两次恒星形成的循环。其后可以看到,很多恒星在其火爆的生命史中将氢和氦转化成较重的元素。例如金元素的出现就清晰地表明它是来自超新星的爆炸。相比之下,第一批恒星在形成时只含有最轻的3种元素。

要形成星系,气体团必须收缩。而气体要收缩,温度必须降低。在现在的宇宙中,气团收缩释放的能量可以被碳和氧原子发出的辐射带走。但在我们描述的这个时代,除了通过氢分子外没有其他的途径进行冷却。而氢分子冷却过程的效率是很低的。其结果是,只有大团的气体才能收缩,而从中形成的恒星也特别巨大。第一批恒星的质量可能有太阳质量的数百倍。既然储存了这么多燃料,那么这些巨无霸的发光时间一定比太阳寿命长很多吧?恰恰相反,这些早期恒星来也匆匆,去也匆匆,仅能存在几百万年。相比之下,太阳的整个活跃期可达90亿年。

13.恒星能量的源泉

要理解这点,就要考虑恒星中心深处的情形。只有一颗恒星允许我们做近距离研究,那就是太阳。太阳,像所有普通恒星一样,是个白热的大气体球,是可以吞没100万个地球这么大的球体。它的表面温度有5600℃,而在核心产生能量的地方,温度高达1500万摄氏度。我们无法看到太阳内部较深的地方,但可以检测它的构成。我们建立的数学模型可以做到符合观测结果,所以才确信对于核心温度的预测。占太阳质量70%的物质是氢,这也是它的燃料,和原始恒星的情况一样。

我们知道氢是最简单的原子,由一个质子和一个环绕的电子组成。恒星内部是如此之热,电子被从原子核边剥离走,剩下不完整的原子称为“电离”。在恒星核心,压力和温度都极端地高,这些原子核的速度是如此之大,当它们互相碰撞时核反应就会发生。氢原子核结合成次轻的元素,即氦原子核。大家公认这一过程是间接而曲折地发生的,其最终效果是4个氢原子核结合成1个氦原子核。这个过程除了产生我们看到的恒星发出的光芒外,同时还产生另一个叫做中微子的副产品,这种奇特的粒子以后还要谈到。在形成氦的过程中要损失点质量,同时释放出很多能量。正是这些释放出的能量使得恒星发光。而对太阳来说,每秒钟要损失400万吨的质量。现在太阳的质量已经比你刚开始阅读这段话时少了许多。氢燃料不可能永远地提供下去,但目前还没有危险。太阳大约在50亿年前诞生,以恒星的标准来看正值壮年。当所有的氢耗尽后,太阳并不是简单地暗淡下去,而是会发生另一段故事,这在以后的章节中会讲到。

所以至少在太阳中,能量来源于在4个氢原子核结合成为1个略轻的氦原子核时损失的质量。自然界中最着名的公式E=mc2告诉我们质量(m)等效于能量(E),而换算系数c2是光速的平方,非常大。所以很小的一点质量消耗就会产生出巨大的能量,而太阳每秒钟要损失400万吨的物质并转化成能量!

这些消失的质量从何而来?氢原子是最简单的原子,只有1个电子环绕1个质子。所以4个氢核中的每个都是1个单独的质子;氦核则由2个质子和2个中子组成。但是,中子比质子稍微重一点,所以如果把这些粒子的质量直接加起来就会发现,1个氦核比4个氢核要重,质量反而增加了!但实际上,尽管氦原子核由重一些的粒子构成,然而其总质量却确实比4个质子要小。要记住这一领域是由量子力学和其关联效应所主宰的,答案也就在这里。如果我们测量单个质子的质量,那么它确实比中子轻。但这些亚原子粒子不是自由的。在氦原子核中它们被强核力束缚在一起,无法自由运动。在亚原子粒子形成这种束缚时会释放出能量,我们测量到的结果就是质量的降低。

为什么产生的原子核要有2个质子和2个中子?如果2个单独的质子之间能形成稳定的约束关系,那么天体物理学家们对于核反应的研究就会变得简单得多。因为那样的话两个质子迎头相撞就能结合成这种“轻氦核”,并释放出电磁波。然而,两个质子带有相同的正电荷,电磁力使它们互相排斥,而它们之间的作用力不足以将它们约束在一起。因此,与这种简单的结合质子的方式所不同的是,在太阳和其他恒星内部,这一过程相当错综复杂而且惊人地缓慢。

由于无法把两个质子简单地结合到一块,我们必须绕过这一阻碍形成更复杂的原子核的状态。在下面的讨论中只需要考虑原子核,而非整个原子。因为在恒星内部这样的高温下,环绕原子核并组成原子的电子早已因能量过高而无法捕获。唯一起作用的是弱核力,它会造成质子自发地衰变成中子,并释放出1个正电子和1个中微子。新产生的中子可以被一个经过的质子捕获,形成一个氘核。氘实际上就是重的氢,等于1个中子加上1个质子。弱力真是名副其实,这一步骤会耗费很长时间。在太阳中心,一个质子可能平均要等上50亿年才会形成一个氘核,而此后的一切就进行得快多了。

在平均1秒左右的时间里,氘核就会抓获另一个质子结合成一种有2个质子和1个中子的稳定的原子核,即氦-3,氦的一种较轻的形式。经过约50万年,这个原子核会撞上另外一个,形成我们更为熟悉的有2个质子和2个中子的氦核,同时释放出2个质子,它们会参与到下一个循环中。这个步骤要把两个带正电的原子核结合到一起,难度较大因而较为缓慢。只在极近的距离内才起作用的强力把两个原子核吸引到一起,而电磁力又抵抗强力使它们互相远离。最后原子核会靠近到使强力发挥作用的地步。这样我们最终获得了辐射形式的能量,一个正电子--它会和它的反粒子结合释放出能量--及一个中微子。

中微子是以高速运动的微小粒子,几乎不与其他粒子发生作用。所以在从太阳中心发出后相对不受周围气体的阻碍。它们中的一些会到达地球,被我们建造的大型探测器所发现。许多年以来都有这样一个问题,就是我们预计每一次产生氦核的碰撞过程中都会产生一个中微子,而探测到的中微子太少。不过中微子有一个惊人的本领,就是在途中改变“味道”或者类型。粒子物理学家发现存在3种中微子,而且它们能够随着时间互相转化。原来的实验都只对其中一个特定类型的中微子敏感,而无法探测到其他类型。总之,这些实验告诉我们,在太阳中心,这一比地球上进行的任何实验都高得多的温度下所发生的反应,我们对它的认识是基本正确的。这些实验也首次提供了可靠的证据,证明中微子具有有限(虽然很小)的质量。因为如果它们像以前认为的那样不具有质量,那么就不可能从一种粒子类型转化成另一种类型。

14.宇宙中的支架

大漩涡星系

在茫茫宇宙中,星星并不是单个地杂乱无章地分布着,而是成群汇聚着的,每群中都是由无数颗恒星和其他天体组成的巨大星球集合体,天文学上称这种汇聚在一起的星群为“星系”。星系在宇宙中数不胜数,天文学家目前发现和观测到的即可达10亿个以上。每个星系大小虽然不同,但都极为庞大,比如我们的地球所在的太阳系还不被视为一个星系,而只是银河星系的一个部分而已。

我们在地球上用眼睛观测到的星系很少,除银河系外,只有临近几个,其中最著名的是仙女座大星系,但这个星系离我们大约200万光年,虽然它比银河系大60%,形状与银河系相似,但我们看上去只是一个光亮的斑点。有时为了方便,天文学家把遥远的几个星系称做星系群,大一些的叫星系团,每个星系团含有100个以上的星系;所有星系团统属于超星系团,超星系团组成总星系,也就是所谓茫无边际的宇宙。

星云

广泛存在于银河系和河外星系之中由气体和尘埃组成的云雾状物质称为星云。它的形状千姿百态、大小不同。其中一种叫弥漫星云,它的形状很不规则,没有明确的边界。在弥漫星云中有一种能自身发光的星云,我们称之为亮星云,亮星云仅是弥漫星云中的一种;另一种为暗星云,这是一种不发光的星云。如银河系中的许多暗区正是由于暗星云存在的缘故。弥漫星云比行星状星云要大得多、暗得多、密度小得多。星云的另一种称为行星状星云,这种星云像一个圆盘,淡淡发光,很像一个大行星,所以称为行星状星云。它是一个带有暗弱延伸视面的发光天体,通常呈圆盘状或环状。它们中间却有一个体积很小、温度很高的核心星。现已发现的行星状星云有1000多个。

恒星

恒星是与行星相对而言的,指那些自身都会发光,并且位置相对固定的星体。太阳是恒星,我们夜晚看到的星星大多数都是看上去不动的恒星。说是“看上去不动”,是说恒星实际上也是动的,不但自转,而且都以各自不同的速度在宇宙中飞奔,速度一般比宇宙飞船还要快,只是因为距离我们太遥远了,人们不易察觉到。

看上去小小的恒星,其实都是极为庞大的球状星体,我们知道太阳这颗恒星比地球的体积大130万倍,但在茫无边际的宇宙中,太阳只是一个普通大小的恒星,比太阳大几十倍、几百倍的恒星有很多,例如红超巨星就比太阳的直径大几百倍。只是太阳离我们近,其他恒星离我们远,就显得很小了;同样的道理,除太阳之外的恒星也在发光,但最近的比邻星也距离我们4光年,我们感觉不到它们的光和热,只是远远望去一点星光而已。有人说,如果能把所有恒星都拉得像太阳那样近,我们在地球上就可以看到无数个太阳了。

行星

我们所说的行星是沿椭圆轨道上环绕太阳运行的、近似地球的天体。它本身不发光。按距离太阳的远近,有水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星九大行星。由于行星有一定的视圆面,所以不像恒星那样星光有闪烁的现象。行星环绕太阳公园时,天空中相对位置在短期内有明显的变化,它们在群星中时现、时隐、时进、时退,所以“行星”在希腊语中为“流浪者”的意思。

卫星

卫星是行星的一种,也是按固定轨道不停地运行,只是与一般行星不同,始终围绕某个大行星旋转,即是某个行星的卫星。比如月亮围绕地球旋转,月亮就是地球的卫星。太阳系中不少行星有自己的卫星,并且不只是一个卫星,例如土星的卫星仅观测到的就有23颗之多。据天文学家统计,太阳系中较大的卫星约有50颗,其中有些是用肉眼看不到的。有些卫星与行星相似,其运行轨道有共面性、同向性,称之为规则卫星;不具有这些性质的卫星,称为不规则卫星。有的卫星与行星绕太阳运行的方向一致,称为顺行;有的相反,称为逆行。对于卫星的起源,迄今仍无定论。

近年来有了人造地球卫星,为了区别,习惯上把原来的卫星称为天然卫星。

彗星

夜间天空的星星,不论行星还是恒星,看上去都是亮晶晶的光点,但有时候会突然出现一种异样的星:头上尖尖,尾巴散开,像一把扫帚,一扫而过,掠向天际。这便是彗星,我国民间形象地称为扫帚星。

星的含义是一个坚硬的天体,而所谓彗星只是一大团冷气,间杂着冰粒和宇宙尘物,严格地说并不是一颗“星”,只是一种类似星的特殊天体。彗星的密度很小,只是一团稀薄的气体,含有氧、碳、钠、氰、甲烷、氨基等原子或原子团。彗星的体积非常庞大,大于太阳系里任何一个星体,头尾加起来有5000万~2亿公里,最长可达3.5亿公里。不过由于它密度小,如果压缩成与地球同样密度的实体,可能只有地球上一座小山丘大小。典型的完整的彗星分为彗核、彗发和彗尾三个部分。彗核由比较密集的固体物质组成,彗核周围云雾状的光辉就是彗发,彗核与彗发又合称为彗头,后面长长的尾巴叫彗尾。彗星的尾巴并不是一直有的,只是在靠近太阳时在太阳光的压力下形成的,所以常背着太阳延伸过去。大的彗星,仅一个彗头就比地球的直径大145倍。

彗星大都有自己的轨道,不停地环绕着太阳沿着很扁长的椭圆轨道运行,每隔一定时期就会运行到离太阳和地球比较接近的地方,地球上就可以看到。不过,彗星绕太阳旋转的周期很不相同,最短的恩克彗星每3.3年接近地球一次,自1786年发现以来已经出现过50多次;有的彗星周期很长,需要几十甚至几百年才接近地球一次;有的彗星的椭圆形轨道非常扁,周期极长,可能几万年才接近地球一次。

彗星密度低,在宇宙间的存在期不如其他星体那样久远,它每接近太阳一次就有一次损耗,日子一长,就会逐渐崩裂,成为流星群和宇宙尘埃,散布在广漠的宇宙空间。现在人们看到的彗星都是大彗星,为数众多的小彗星很难被观测到。1965年我国的紫金山天文台发现过两颗彗星,分别定名为紫金山1、紫金山2。在观测研究彗星方面,最著名的是对哈雷彗星的观测。这个彗星是17世纪时英国天文学家哈雷根据万有引力定律计算出来的,哈雷计算出这个彗星每隔76年左右接近太阳一次,并准确地推算出1758年12月25日在太阳附近的位置,这是被人类计算出周期的第一颗彗星。

古时候人们不懂得彗星的来龙去脉,见它形状奇特,运行诡秘,多把彗星的出现视做人间灾祸的预兆。其实,彗星与其他星体一样,只是一种自然现象,与人间的祸福没有什么因果对应关系。并且,由于彗星密度极小,与其他星球碰撞也不会有什么影响,比如,本世纪初天文学家计算出哈雷彗星将于1919年接近太阳,并且将与地球碰撞。当时很多人惊恐万分,认为世界的末日即将来临。5月19日,哈雷彗星确实出现了,它那几千万公里长的尾巴与地球碰撞了,但并没有给地球带来危害,因为彗星的尾巴其实是一种气体。

流星和陨石

在晴朗的夜空中,在闪烁的繁星中间常常划过一道白光,稍现即逝,我国民间称为“贼星”,天文学上叫流星。流星一般闪过就解体了,有的却有大块物体落在地球上,这种坠落物就叫陨石或陨星。按化学组织的不同,陨星大致可以分为三类:含镍90%以上的叫陨铁或铁陨星;含镍和硅酸盐矿物各半的叫石铁陨星;90%为硅酸盐矿物的叫石陨星,也叫陨石。从收集到的样品来看,92%为陨石。目前世界上最大的一块陨石是1976年3月8日在我国吉林省陨落的,重达1770公斤。最大的陨铁在非洲的纳米比亚,重达60多吨。天文学界极为重视对陨星的研究,因为这是不可多得的宇宙天体的自然标本,尤其是陨石的年龄和地球大致相当,老是46亿年左右。但在这漫长的时间里地球内部和外部变化很多很大,地球形成初期的很多物质已经沉埋在地球核心而无法取得,有的则早已不存在了。陨星却不是这样,由于它体积小,没有发生地球那样巨大的变化,还基本保持着原来的面目,这便为研究地球的起源提供了重要依据,并且对研究太阳系其他星体的形成也是很有价值的。

陨星坠落会对地球表面产生一些影响,如气候的异常、个别生物火绝等,但与人们的祸福、与人间社会的治乱兴衰并没有什么直接的关系。

15.宇宙中的太阳系

观测茫茫无际的宇宙苍穹,首先要了解我们地球所在的太阳系。太阳系是个以太阳为中心的极其庞大的天体系统,它由太阳及9颗大行星、50余颗卫星、2000多颗已被观测到的小行星以及无数的彗星、流星体等组成。这个庞大的天体系统就像一个井然有序的大家庭,所有的天体都以太阳为中心、沿着自己的轨道有条不紊地旋转着,并且旋转的方向基本相同,基本上在一个平面上旋转。在太阳系众多天体的运行中,太阳如同一根万能的绳子,拉着所有的天体围绕自己旋转运动,偶尔有个别星星脱离轨道,最终也会被太阳的引力控制住。

在太阳系中,太阳不仅是中心,而且在重量上也绝对压倒其他天体。科学家进行过大致推算,就整个太阳系的重量而言,太阳占总重量的99.8%~99.9%;更重要的一点,太阳是太阳系中唯一能发光的星体,其他都是从太阳上借光或反光。太阳的中心温度高达1500万度,表面温度达6000℃,每秒钟辐射到太空(包括我们所在地球)的热量相当于1亿亿吨煤燃烧后产生的热量的总和。

太阳系的疆域极为辽阔。如果按照通常说法把冥王星作为太阳系边界的话,约为60亿公里的半径范围;形象地说,如果我们乘坐目前世界上最快的时速为1500公里的飞机,从冥王星飞到太阳,也要连续飞行457年的时间。

然而,庞大的太阳系又不庞大。在整个宇宙中,在我们所基本了解的银河系中,太阳系又是一个很小的部分。太阳系的天体围绕太阳旋转,整个太阳系又围绕着银河系的中心旋转。并且,太阳系在宇宙中不只一个,据近年美国科学家观察研究,至少还有一个以织女星为中心的类似太阳系的天体系统;科学家们还推测说,在现在科学仪器的视野之外,肯定还有着许多类似太阳系的“太阳系”在按自己的轨道运转着。

太阳是太阳系的中心,是一颗恒星,直径大约有139万公里,体积大约是我们所在的地球的130万倍。

太阳在宇宙中是一颗普通的恒星,又是一颗能发光发热的恒星。我们已经知道,太阳本身是一个炽热的星球,仅表面温度就有6000℃,内部温度更高。太阳的光和热的能源是氢聚变为氦的热反应。因为太阳的主要成分就是氢(占71%)和氦(占27%),热核反应在太阳内部进行,能量通过辐射和对流传到表层,然后由表层发出光和热,习惯上称为“太阳辐射”。

太阳带有光和热的表层称为“太阳大气”,由里向外分为三个部分:光球、色球和日冕。我们肉眼所能看见的太阳表面很薄的一层为“光球”,厚度只有500公里,平均温度约为6000℃,我们看到的太阳的光辉,就是这层光球。也正是由于这层光球,遮住了人们肉眼的视线,使人们在很长一段时间内看不到太阳的真正面目,更无法了解太阳内部的奥秘。第二层(也叫中间层)是“色球”,厚度大约为2000公里,为光球厚度的4倍,密度却比光球更稀薄,几乎是完全透明的。色球的温度高达几万度,但它的光却被光球遮挡住,平时很少能看到。只有在日食的时候,太阳的光球被月亮完全挡住,在黑暗的月轮边缘可以看到一丝纤细的红光,这便是色球的光亮。第三层即最外一层为“日冕”,厚度约为数百万公里,日冕的光更微弱,用肉眼完全看不到,但日冕的温度却很高,达100万度,在这样的高温下,太阳上的氢、氦等原子不断被电离成带正电的质子和带负电的自由电子,并且挣脱太阳的引力,奔向广袤的宇宙空间。这便是天文学上称为“太阳风”的现象。在太阳表面的三层结构中,只有外层的日冕有不规则变化,有时呈圆形,有时则呈扁圆形。

此外,在太阳的边缘外面还常有像火焰样的红色发光的气团,称做日珥。有时日珥向数十万公里高处放射,然后又向色球层落下来,实际上这也是日冕不规则变化的一种形式。日珥大约11年出现一次,不过,我们用肉眼看不到,只有天文工作者用特制仪器,并且只有在日全食时才看得比较清楚。

月亮学名月球,是太阳系的一个星球,只是不像其他行星那样以太阳为中心旋转,而是围绕地球转,是地球的天然卫星。月亮的光是由于太阳的照射而产生的,它本身不会发光或发热

月球的体积约为地球的1/48,密度为地球的3/5,远不如地球坚实。月球上的重力比地球上的重力小得多,比如在地球上重100公斤的物体拿到月球上还不到17公斤。月球绕地球公转,同时又自转,旋转的两个周期相同,都是27.3天,而且方向相同,结果总是一面朝向地球。地球上的人永远只能看到月球的一面,看不到另一面。

面朝月球,即我们看到的一面,布满了大大小小的环形山,有些像地球上的火山口;另一面山地较多,中部是一条绵延2000公里的大山系。人们比较重视月球上的环形山,据分析直径1公里以上的环形山有30万座,有一座最大的直径为295公里,可以把我国的海南岛放在里面。天文学家认为,环形山是陨石撞击月球留下的痕迹,另一种解释是月球上发生过猛烈的火山爆发,环形山即是火山口。还有,在明亮的夜晚我们可以看到月球表面的暗纹暗斑,那是月球上的平原或盆地,天文学家称之为“月海”,并不是传说中的嫦娥、玉兔??

月亮被太阳照射的时候,表面温度高达127℃,不被照射的时候或阴面则为零下183℃,温差达310℃,不适宜生物存活。月球上面没有空气,“月海”实际是干枯的盆地或平原,根本没有水,从来没有过生命的踪迹。

不过,月球并非没有认识价值。1969年7月21日,美国宇航员阿姆斯特朗、柯林斯和奥尔德林乘坐“阿波罗11号”宇宙飞船第一次成功地登上了月球,对月球的起源、结构和演化过程有了进一步的科学的了解。天文学家发现,月球的物质组成与地球很相近,月岩中含有铝、铁等66种有用元素。后来,宇航员们又多次登上月球,收集各种标本,进行勘测实验。可以确信,随着对月球认识的全面和深化,对月球的开发和利用会成为并不遥远的事实。

太阳是太阳系的中心,是一个大大的恒星,在太阳的周围有许许多多的行星,其中大的行星有九个。这九个行星大小不同,一般是按距离太阳的远近,由近及远地排列,即:水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。

水星是九大行星中距太阳最近的,体积排在第二位,直径4880公里。由于离太阳近,受到太阳的强大引力,所以围绕太阳旋转得很快。水星的一年只相当于地球的88天,而水星自转一周相当于地球的58.65天,正好是它绕太阳公转周期的2/3。它虽然名为“水星”,其实上面全是干枯荒凉,一滴水也没有。这是因为水星离太阳近,朝向太阳的一面受烈日曝晒,温度高达400℃以上,这样的温度连钨都会融化,如果有水也早蒸发完了。背向太阳的一面温度则非常低,达零下173℃,在这样低的温度下也不可能有液态的水。特别是温差达500~600℃,都不可能有水存在。不仅没水,水星表面的空气也非常稀薄,大气压力只有地球的五千亿分之一。可以想象,这是一个多么荒凉的星球!它并不像我们从地球上偶尔观察到的那样幽暗中带有一丝羞涩和温柔。不过,只是到最近,人们才真正得以目睹水星的真面目。1975年美国宇航员把空间探测器飞到离水星仅320公里的地方,拍下了几千张照片,可以清晰地看到水星表面大大小小的环形山以及平原和盆地。大的环形山直径达几百公里,小的仅几公里,也有直径达1000公里的环形盆地,并推测出它的内核是铁质的。

金星是从地球上看到的最明亮的一颗行星,看上去晶光夺目,亮度仅次于太阳和月亮。我国古时候把黎明前东方天空中的一颗明星叫做启明星或太白星,把黄昏时分西边天空中的一颗明星叫长庚星,其实这是同一颗行星即金星。金星虽然离地球比较近,最近时只相距4000万公里,但由于金星的表层有一层硫酸雨滴和云雾,远远望去一片迷蒙,阻挡了地球人的视线。1964年,天文学家把精密仪器带到高空空气稀薄的地方观察金星,又向金星发射行星探测器,才弄清了这层云雾的成分,并透过云层观察了金星的面目。天文学家们观察到金星上有高山、盆地和平原,最高的一座山峰高出金星表面10590米;最大的平原有半个非洲那么大。小山、丘陵不计其数,而且常有火山喷发。金星的云层里含有水气,但金星表面没有水。云层的表面温度达480℃以上,没有生命存在。金星的旋转也是围绕太阳公转,又有自身的旋转。绕太阳一周相当于地球的225天,自转一周为243天。

地球是九大行星中的一个适宜生物存在和繁衍的行星,因为在地球上面有空气,有水和适宜的温度,从太空看地球,看到的是一个蔚蓝色的球体。地球的平均直径约为12742公里,表面积的70.8%为海洋覆盖,并被一层厚厚的大气层包围着。地球的结构分为三个层次:最外面的是厚度为21.4公里的地壳,中间一层为地幔,最中心部分为地核。地核中心的温度很高,估计可达4000~5000℃,主要由铁、镍组成。地球绕太阳公转,又有自身的旋转。绕太阳公转一周为一年,公转的速度为29.8公里/秒。在九大行星中除了火星和金星外,地球的公转速度是最快的。自转的时候,转一圈为23小时56分4秒。为了计算方便,人们规定一年为365天,一天为24小时。由于地球自转的轴线与地球公转的轨道不垂直,产生了地球的四季变化和热、寒、温气候“带”的区分。更为可贵的是,地球上适宜的环境养育了人类。人类创造了超越自身体力的科学技术,了解地球、保护地球、利用地球,把地球建设成了宇宙间最美丽的星球。

火星是一颗火红色的行星,点缀在天空夜幕上,是星空中最为吸引人的繁星之一。仔细观察,可以看到它缓慢地穿行在众星之间,如火的荧光时有强弱变化,并且穿行的方向、亮度的变化好像没有规则,所以古时候欧洲人把它当做“战神星”,认为它象征着战争和灾难;中国人称它为“荧惑星”,认为是不吉利的星。火星离地球很近,在地球的外侧绕太阳运行,并且与地球有极为相似的许多特征:在火星上有白天黑夜的交替,有春夏秋冬的四季变化;在火星上看太阳也是从东方升起,从西方落下;火星的自转周期也与地球相近,为24小时37分,仅慢半个小时;并且与地球有月亮环绕一样,火星也有两颗卫星??只是比地球小,火星的直径只有地球直径的15%,一年为地球的687天,并且温差比地球上大得多,特别是昼夜温差,白天为最高28℃,夜间则下降为零下132℃。结果,没有生物在火星上生长,更没有人类,人们长期想象中的“火星人”、“火星鼠”仅仅是一种想象而已。自1962年以来,美国等国的天文学家向火星发射了15个探测器,并派飞船登上了火星,发现火星的表面是干燥、荒凉的旷野,有许多沙丘、岩石和火山口,有比地球上的峡谷大得多的峡谷,有比喜玛拉雅山更高的山峰,虽然有大气层,却95%以上为二氧化碳,并且极为稀薄,氧气极为罕见。

木星看上去比较昏暗,不如金星明亮,这是由于它离地球远的缘故。其实,木星在九大行星中是最大的,把太阳系所有的行星和卫星加在一起也没有木星大,木星的体积相当于1300多个地球,重量是地球的318倍,天文学上称之为“巨行星”。木星绕太阳公转一周几乎需要12年时间,所以我国古代就把木星运动的周期12年与历法上的十二地支结合起来,并称木星为“岁星”。木星自转的速度却很快,大约9小时50分转一圈。正因为它自转速度快,使得它自身形成了不同于其他行星的扁形球,赤道直径与两极直径之比为100∶93。由于木星内部存有大量的能量并不断向外散发,形成了独特的快速大气环流,所以从地球上观察可看到木星表面有一些各种色调的斑点,并且在南半球有一个著名的椭圆形大红斑,长轴约为2万多公里,其实这正是大气环流过程中形成的大气旋涡。木星的表面有一层1000公里厚的大气层,主要成分是氢和氦;由于离太阳远,木星的表面温度只有零下140℃。在这样的空气、温度的条件下,加上没有水,木星上没有生物存活。不过,木星却有很强的无线电辐射,磁场强度为地球的10倍,是目前发现的天空中最强的射电源之一。它的磁极方向与地球相反,地球的S极在北极附近,木星的S极则在南极附近。尤为独特的是,木星周围有大小15个卫星环绕,小的直径只有8公里,大的5200多公里;旋绕的速度也不同,最短的11小时53分一周,最长的绕一周需要758天,其中最亮的有4颗。由于这4颗最亮的木星卫星是1610年伽利略首次观察到的,天文学上称之为“伽利略卫星”,或依次编号为木卫一、木卫二??有人说,木星和它的卫星恰如一个缩小了的太阳系,对木星的研究对揭开太阳系的奥秘有特殊意义。特别是自1973年以来,美国发射的宇宙飞船飞近木星,观察到了只有在地球上才出现过的极光等现象,对木星的研究更加引起了天文学家的浓厚兴趣。

土星是太阳行星中仅次于木星的第二大行星,体积是地球的745倍。由于它离地球和太阳都比较远,在100年前人们一直把它作为太阳系的边界,后来才发现还有更遥远的太阳行星。由于土星自转速度快,转一周的时间为10小时14分,它的形体也呈扁圆形状,并且是太阳系中最扁的行星,赤道直径与两极直径之比为100∶90。并且密度很小,比水还要轻,也就是说,取下土星上的一块物体,可以漂浮在水面上。在太阳系里,土星又是一颗美丽的行星,它的外面围绕着一圈明亮的光环,仿佛带着银光闪闪的项圈。土星的光环非常宽阔,如果把我们的地球放上去,也好像是在公路上滚皮球一样,因为这个光环仅厚15~20公里,宽度则达20万公里。并且光环的亮度和宽度经常变化,有时清晰,有时模糊,有时看不到踪影,每隔15年左右循环变化一次。原来,这个光环是由许许多多直径不到1米的小石块小冰块组成的,绕着土星表面飞快奔跑,看起来就成了一条闪光的环;至于有时明显,有时昏暗,并不是光环自身的变化,而是土星朝向地球的位置不同,我们观察时产生了视差。土星有21~23颗卫星环绕,最小的直径300公里,最大的直径5150公里,比月球还大。

天王星在200多年以前,人们以为太阳只有水星、金星、地球、火星、土星和木星六颗行星,并认为土星是太阳系的边际。直到1781年3月13日,一位爱好天文的音乐家威廉·赫歇耳通过自制的天文望远镜发现了太阳系的一个新成员,这就是天王星。天王星很大,直径为地球的4.06倍,体积是地球的60多倍,但因为它距离地球太远,所以用肉眼看不到;它距太阳也很遥远,约为地球距太阳的19倍,所以从太阳得到的光热极少,其表面温度总在零下200℃以下。天王星的旋转很特殊,不仅很慢,绕太阳公转一周需要84年,而且自转也不规则,似乎是躺着转,即有时“头”朝太阳,有时则“脚”朝太阳。这又使天王星上的季节变化别具特色,只有春秋两季白天黑夜比较分明;冬夏两季一面长期面向太阳,温度升高,另一面长期背朝太阳,温度极低。由于天王星距地球遥远,观测比较困难,到目前为止只发现它的5颗卫星,并发现它也有一个与土星相似的美丽光环,光环中包含着大小不同、色彩各异的9条环带。

海王星本身没奇特之处,由于它的发现过程与其他行星不同而名声大振:一般的行星都是由望远镜观察到的,而海王星却是天文学家计算出来才找到的。原来,天王星被发现后,人们为它的不规则旋转轨道感到惊奇,因为用牛顿的万有引力定律可以准确推算其他行星的位置,只有天王星的位置总是与推算结果不符,这种现象促使天文学家们提出一个大胆的设想:在天王星附近还有一颗行星在影响着天王星的规则运行。很快,有三位天文学家计算出了这另一颗行星的位置和运行轨道,并从天文望远镜中捕捉到它,这便是海王星,所以有人称海王星是“笔尖上发现的行星”。至于海王星本身,就没有什么特别的地方了,它的体积大约是地球的4倍,与太阳的平均距离为45亿公里。绕太阳公转一周需要165年,自转一周为15小时48分。表面温度与天王星一样,在零下200℃左右。海王星有两个卫星,一个顺行,一个逆行,按完全相反的方向绕海王星旋转。从天文望远镜中观察,海王星也是一个扁状球体。

冥王星天文学家在推算并找到海王星以后,很快发现海王星与天王星一样旋转很不规则,便自然想到还有一颗行星隐藏在它们附近,本世纪之初,美国天文学家洛威尔计算出了这个未知行星的运行轨道,却没有观察到它。到1930年2月18日,一个叫汤博的天文学家在星象照片上发现有一颗星在众星之间不断移动,因为只有行星才会移动,汤博很快断定这正是洛威尔计算出的那颗行星,后来命名为冥王星。冥王星距太阳远,距地球也比较远,加上发现时间短,人们对它的了解还很少。现在只知道它绕地球公转一周需要248年,在九大行星中它距太阳最远,如果从冥王星上望太阳,也是一个耀眼的小光点,所以它接收不到太阳的光和热,至多只能得到地球所得到的几万万分之一,冥王星是一个寒冷黑暗的星球。近年来人们还发现,冥王星的卫星与冥王星的自转周期相同,都是6天9小时,是迄今发现的唯一的一颗天然同步卫星。如果从冥王星上观察这颗卫星,便是一个不动的星星。

16.我们看到的“星星”

星座

现在,人们用肉眼可观测到的星大约有6874颗,现代最大的望远镜至少可以看到10亿颗,而这仍是宇宙太空中星球的一个极小部分。为了观测方便,尤其是为了准确识别新星,人们把天空的星星按区域予以划分,分成了若干个星座。

据说,古巴比伦人曾把天空中较亮的星星组合成48个星座,希腊天文学家用希腊文给星座命名,有的星座像某种动物,就把动物作为星座的名字,有的则是出于某种信仰,用神话中人物的名字来命名。我国自周代即开始划分星座,称为星宿,后来归纳为三垣二十八宿。三垣为:紫微垣、太微垣、天市垣;二十八宿为:角、亢、氐、房、心、尾、箕、井、鬼、柳、星、张、翼、轸、奎、娄、胃、昴、毕、觜、参、斗、牛、女、虚、危、室、壁。三垣都在北极星周围,其中的恒星不少是上古的官名,如上宰、少尉等。二十八宿是月亮和太阳所经过的天空部分,里面的恒星的名字,有很多是根据宿名加上一个编号,如角宿一、心宿三等。在我国苏州博物馆中有一个宋代天文学家制作的石刻星图,这是目前世界上最古老的石刻星图之一。

由于世界上较早发达的国家集中在北半球,在公元2世纪的时候北天星座的划分已经与今天一样了,而南天的星座基本上是17世纪以后,伴随着西方殖民主义者到达南方各地才逐渐制定出来的。截止目前,天空中的星座共划分为88个,其中29个在赤道以北,46个在赤道以南,跨在赤道南北的13个。这是1928年国际天文学联合会统一调查,重新划分归纳的。

在88个星座中有15个在南天极附近,住在北京一带的人永远看不到;在上海则可以看到这15个星座中的6个,因为上海比北京纬度低一些;我国海南岛南端榆林港的纬度最低,那里的居民可以看到84个星座。

大角星

在晴朗的春夜你可以顺着北斗七星的柄,向东南方延伸至与北斗七星的柄差不多长处,就可清楚地看到形似东方苍龙一只角的大角星。它在我们肉眼可看到的最亮的恒星中,运行速度最快。在无数个世界中,它以每秒483公里的速度在太空中遨游。它距我们地球较近。大角星属一等亮星,亮度为全天第四。表面温度4200℃,光色为橙黄色。它距我们有36光年。直径为太阳直径的27倍,发光表面为太阳的700倍以上。

天狼星

冬夜,在恒星世界中,人们仰望天空,望见最亮的那颗星为天狼星。

它位于大犬星座之中。到冬夜,它在西南方的天空中熠熠发光。它的质量是太阳的2.3倍,半径是太阳的1.8倍,光度是太阳的24倍。天狼星为什么如此之亮呢?主要是它距我们比较近,只有8.65光年。

天狼星在古埃及人心目中是一位掌管尼罗河泛滥的女神,每当这位女神与太阳同时在东方地平线上升起时,尼罗河就要泛滥了。他们把这一天定为新年的开始。天狼星实际上是一对相互绕转的双星,不过这要用较大的望远镜才可分辨出来。在1862年美国天文学家克拉克发现了天狼星伴星——白矮星。

比邻星

在广阔无垠的太空中,有无数颗恒星,其中离太阳最近的一颗恒星称为比邻星,它位于半人马座,离太阳只有4.22光年,相当于399233亿公里。如果用最快的宇宙飞船,到比邻星去旅行的话,来回就得17万年,可想而知,宇宙之大,虽说是比邻也远在天涯。比邻星是一颗三合星。它们在相互运转,因此在不同历史时期,“距离最近”这顶世界之最的桂冠将由这三颗星轮流佩戴了。

北极星

由于地轴的运动,北天极在天空中的位置总是不断地变动,因此,北极星也随之不断地易位,不断地更换得主。

从公元前1100年的周朝初年到秦汉年代,北天极距小熊座β星最近,因此,那个时代的北极星是小熊座β星,即我国所称的帝星。明清以后,北天极转向小熊座α星(即勾陈一),该α星便成了北极星。公元前2000年时,天龙座α星,中国名古枢,是北极星,古埃及金字塔底的百米隧道就是对它而挖,为观察它而修筑的。天文学家预测,待4000年后,即公元6000年,北极星将易位给仙王座β星。8000年后,天鹅座α星(天津四)为北极星。1万年后,北极星的桂冠将落到明亮的织女星——天琴座α星的头上。

英国科学家牛顿用万有引力说明了地轴运动的原因。地球的自转运动像一个陀螺在旋转。地球的赤道部分比两极凸起,太阳、月亮对地球赤道凸起部分的引力作用,使地轴向黄道面方向倾斜运动,造成北天极在天空位置发生变动,北极星便随之易位。但是,不管北极星的得主是哪颗星,因为地球轴线所指方向不会变,所以,我们不论从什么位置,也不论在什么时候,它的位置总是在北方。

北极星不但可以指示方向,而且可以当时钟用。从事夜间野外工作的人,在没有钟表的情况下,可以借助北极星知道时间。请你仰望夜空,面对北极星而立,把北极星作为钟表的中心。再找到北斗七星,将北斗七星的指极星(即天璇和天枢)与北极星的连线作钟表的时针。以北极星为中心将天空划分为12等分,作为钟表的刻度。好了,现在你就有了一个夜空赐予你的“星钟”了。北极星向下指向地平线的是北方,向上则为天顶,即刻度为12处。由于星辰东升西落,所以星钟的指针转动的方向与普通钟表指针相反,12点以后不是1点,而是11点,然后依次为10、9这怎么计时呢?不要着急,只要借助一个简单的计算公式,你就可以得到与普通钟表几乎一致的时间了。首先,在观看星钟时要记住你所在地以时为单位的经度,认好星钟时针所指的“钟点”数字,记住当时的月份和日期,然后用下列公式就可以定出北京时间了:北京时间=36.4小时-经度-2×(钟面点数+M)这里的“M”是这年1月1日算到观看日期的日数(每天算成0.1月)。如果得出的是负数,就再加上24小时。比如,1989年6月1日,在北京天文馆(经度是7.8小时)看北斗星钟的指针在“10”,当时的北京时间应是:63.4小时-7.8小时-2×(10+5)时间=-1.4小时24小时-1.4小时=22.6小时。也就是说,当时的北京时间是晚上10点36分。你不妨试试看。

北斗七星

我国古老的神话中有这样一段故事:黄帝与炎帝臣子蚩尤大战于涿鹿之野。蚩尤以魔法造起迷天大雾,困得黄帝的军队三天三夜不能突围。黄帝的臣子风后受北斗星的斗柄指向不同的启发,想出一种指南车,引导黄帝的军队冲出了大雾的重围。

在众多民族的历史中都有这类借藉北斗星定方向的记载。在晴朗的夜晚,我们在北方天空很容易发现7颗构成斗勺图形的星星,这就是我们说的北斗星。古希腊人和罗马人称之为熊(Aretos);不列颠人称之为“犁”(Plow);美国人叫它“大杓”(BigDipper);1928年国际天文学联合会定名为大熊,符号为OMa。北斗七星的中国名称是天枢、天璇、天玑、天权、玉衡、天阳和摇光,它们的符号分别是α、β、γ、δ、ε、ζ、η。前4颗连接起来的几何形状像个斗勺,所以称它们为斗魁;后3颗像是斗勺的柄,所以这3颗又称斗柄。北斗七星中,“玉衡”最亮,近乎一等星;“天权”最暗,是一颗三等星;其他5颗星都是二等星。在“天阳”附近有一颗很小的伴星,叫“辅”,它一向以美丽、清晰的外貌引起人们的注意。据说,古代阿拉伯人征兵时,把它当做测试士兵视力的“测目星”。北斗七星中的天璇和天枢两星,有特别的效用:从“天璇”过“天枢”向外延伸一条直线,延长约5倍,就是与北斗遥相辉映的北极星。北极星的方向就是地球的正北方。所以,天枢、天璇又统称指极星。地动星旋,东升西落,而北极星居其中,近乎不动。人类的祖先根据北极星和北斗七星的斗柄“春指东、夏指南、秋指西、冬指北”的运转规律,来确定方向,北斗星成了漂泊在茫茫大海上的船只和陷入草原荒漠的迷路人的太空指南针。

在中国,传说北斗星是寿星,他主管人间的寿夭。这位寿星酷爱奕棋消遣,常常化作老人的样子,游戏于人间。三国时,有个占卜者管辂曾替人出主意,恳求北斗把岁数从19岁增加到99岁。北斗星成为渴求长寿的人们心目中的保护神。尽管北斗为何被古人奉为寿星无可考证,但给老年人祝寿时,总以老寿星作比喻,以祝愿老人健康长寿。

在西方,普遍流传着古希腊神话中有关大熊星座的故事,传说这只大熊原是个美丽温柔的少女,名叫卡力斯托。众神之主宙期爱上了这位美丽绝伦的姑娘,与她生下了儿子阿卡斯。宙斯的妻子赫拉知道后妒火中烧,对卡力斯托施展法力。倾刻间卡力斯托白皙的双臂变成了长满黑毛的利爪,娇红的双唇变成了血盆似的大口。美貌的少女终于变成了狰狞凶恶的大母熊。赫拉还嫌惩罚不够,又派猎人追杀大熊,宙斯在空中看到,怕赫拉再加害卡力斯托,就把大熊提升到天上,成为大熊星座。北斗七星的斗柄成为大熊长长的尾巴,斗勺是大熊的身躯,另一些较暗的星组成了大熊的头和脚。

在美洲,传说从前有成群的猎人在冰天雪地里追赶一只熊,忽然来了一个巨怪把猎人吞食,只剩下3人,这3人仍穷追大熊不放,直追到天上,与熊一起变成了星宿。所以美洲土人也称北斗为大熊。七星中的斗魁是熊,斗柄是追熊的3个猎人:第1个人弯弓射熊,第2人执斧宰割,第3人手持一把柴火,待烹煮大熊。在碧海青天里,3个猎人夜夜追熊,总要到秋天才能把熊射杀。那漫山遍野红彤彤的霜叶,据说就是熊血点染的。

牛郎星

河鼓二即天鹰α星,俗称“牛郎星”。在夏秋的夜晚它是天空中非常著名的亮星,呈银白色。距地球16.7光年,它的直径为太阳直径的1.6倍,表面温度在7000℃左右,发光本领比太阳大8倍。它与“织女星”隔银河相对。古代传说牛郎织女七月七日鹊桥相会。实际上牛郎织女相距14光年。即使乘现代最强大的火箭,几百年后也不曾相会。牛郎星两侧的两颗暗星为牛郎的两个儿子——河鼓一、河鼓三。传说牛郎用扁担挑着两个儿子在追赶织女呢。

织女星

织女星又被荣称为“夏夜的女王”。它位于天琴座中,是夏夜天空中最著名的亮星之一。位于银河西岸,与河东的牛郎隔河相望。织女星,呈白色,离我们地球26.4光年,直径为太阳的3.2倍,体积约为太阳的33倍,表面温度为8000℃左右,发光本领比太阳大8倍。由于地轴运动,公元14000年时,织女星将是北极星。在织女星旁有四颗暗星,组成一个小菱形。传说这是织女的梭子,她一边织布,一边深情地望着银河对面的丈夫(牛郎)和两个儿子(河鼓一和河鼓三),热切期待着鹊桥相会的喜日子很快到来。

哈雷彗星

哈雷给“妖星”正名17世纪80年代之前的漫长岁月里,人们一直受着彗星的困惑而惶惶不安。丹麦有个名叫布拉乌的天文学家,把彗星当做“妖星”,并给它涂上了神秘的色彩,说什么彗星是由于人类的罪恶造成的:“罪恶上升,形成气体、上帝一怒之下,把它燃烧起来,变成丑陋的星体。这个星体的毒气,散布到大地,又形成瘟疫、风雹等灾害,惩罚人类的罪行。”因此,1682年的一个晴朗的夜晚,当一颗奇异的星星,拖着一条闪闪发光的长尾巴,披头散发地出现在天空中时,人们吓呆了。天主教的神父们将这颗星视作灾难降临的预兆,疾呼:“妖星出现,世界的末日到了,大家快向上帝忏悔吧!”尽管人们纷纷忏悔,这颗星仍一连几十个夜晚缓缓地在浩渺的星空运行。王公贵族们利用这一自然现象,咒骂自己的政敌不得好死;星相家与巫师们更是乘机兴风作浪,一时间,人们惊恐万分。

然而,英国天文学家爱德蒙·哈雷却不听邪,他对这颗彗星毫无惧色,决心要揭天所谓“妖星”的真面目。

哈雷对英国和世界各地历史上有关彗星的观测资料进行了研究,并对其中24颗彗星的轨道进行了计算,发现1513年1607年和1692年出现的3颗彗星的轨道十分接近,时间间隔又恰恰都76年左右,于是断定,这是同一颗彗星,并预测这颗彗星下一次回归的时间:1758年12月25日。这天,壮观的大彗星果然如期莅临。为纪念这位科学家的英明预言,人们将这颗曾蒙受“妖星”之冤的彗星,定名为“哈雷彗星”。

现在,人们已经知道彗星内部的主要成分是冻成冰的气体、尘埃以及大石块。那扫帚般的长尾巴主要由氮、碳、氧和氢等各种化合物自由原子构成的。

又丑又脏的哈雷彗星彗核,哈雷彗星有一条十分壮观的彗尾,有一头美丽明亮的彗发,那它的彗核是什么模样呢?人类一直想一睹它的风采。

这颗迟迟不肯以真面目示人的哈雷彗星的彗核,却原来是个又丑又脏的家伙。其模样长得与其说像一个带壳的花生,不如比作一个烤糊了的土豆更为贴切。表皮裂纹累累,皱皱疤疤,其脏、黑程度令人难以想象。它最长处16公里,最宽处和最厚处各约8.2公里和7.5公里,质量约为3000亿吨,体积约500立方公里。表面温度为30~100℃。彗核表面至少有5~7个地方在不断向外抛射尘埃和气体。彗核的成分以水冰为主,占70%,其他成分是一氧化碳(10~15%)、二氧化碳、碳氧化合物、氢氰酸等。整个彗核的密度是水冰的10~40%,所以,它只是个很松散的大雪堆而已。在彗核深层是原始物质和较易挥发的冰块,周围是含有硅酸盐和碳氢化合物的水冰包层,最外层则是呈峰窝状的难熔的碳质层。

哈雷彗星在茫茫宇宙的旅行中,不断向外抛射着尘埃和气体。从上次回归以来,哈雷彗星总共已损失1.5亿吨物质,彗核直径缩小了4~5米,照此下去,它还能绕太阳2~3千圈,寿命也许到不了100万年了。

不可思议的哈雷彗星“蛋”

哈雷彗星,这颗彗星家族的明星,给人类带来了多少有趣的话题啊。人们因不知它的底细,曾视它为“妖星”而恐惶不安过;人们因看不清它的真面目,而浮想联翩过。如今,人们借助于科学揭开了它的身世,掀开了它的面纱,可唯独有一个谜,至今令世人困惑莫解,这就是哈雷彗星“蛋”。

不知何故,哈雷彗星与母鸡结下了缘。每当哈雷彗星在间隔76年左右的回归年拜访地球时,必有一只母鸡会产下一枚奇异的“彗星蛋”来。请看这一起起不可思议的记录吧:1682年,哈雷彗星回归。德国马尔堡一母鸡产下一枚蛋壳上布满星辰的蛋;

1758年,哈雷彗星回归。英国霍伊克一母鸡产下一枚蛋壳上绘有清晰的彗星图案的蛋;1834年,哈雷彗星回归。希腊科扎尼一母鸡产下一枚蛋壳上描有规则彗星图案的蛋;1910年,哈雷彗星回归。法国报界透露,一母鸡产下“蛋壳上绘有彗星图案的怪蛋,图案如雕似印,可任君擦拭”。

1986年,哈雷彗星回归。意大利博尔戈一母鸡产下蛋壳上印有清晰的彗星图案的蛋。这一枚枚神奇而又精美的“彗星蛋”给人类带来了什么宇宙信息?为什么“彗星蛋”的出现与哈雷彗星的回归周期相吻合?在茫茫窿穹游荡的哈雷彗星给地球上小小的母鸡输入了什么信号,令它产下绘有奇妙星图的蛋?为何不见其他彗星有此神力?为什么现已发现的“彗星蛋”都集中在西欧地区?原苏联生物学家亚历山大·涅夫斯基认为:“二者之间必有某种因果关系。这种现象或许与免疫系统的效应原则和生物的进化是相关的。”这位科学家的见解是否对呢?哈雷彗星与鸡蛋之间究竟有什么因果关系?这一切,现在仍旧是个谜。

17.太空的科学研究

1986年2月20日,前苏联发射了“和平”号空间站。它全长超过13米,重21吨,设计寿命10年,由工作舱、过渡舱、非密封舱三个部分组成,有6个对接口,可与各类飞船、航天飞机对接,并与之组成一个庞大的轨道联合体。自“和平”号上天以来,宇航员们在它上面进行了大量的科学研究。还创造了太空长时间飞行的新纪录。“和平”号超期服役多年后于2001年3月19日坠入太平洋。

1981年,全世界第一颗红外天文卫星发射升空。

1990年4月25日,由美国“发现”号航天飞机送入太空的哈勃空间望远镜(HST)。它的目的是探测宇宙深空,了解宇宙起源和各种天体的性质和演化。

HST耗资21亿美元,对天文学特别是天体物理学的推动是巨大的。在空间放置望远镜可以摆脱大气的干扰,没有大气消光的问题,同时因为没有大气,设计的望远镜可以达到衍射极限。它的镜面不受重力的影响,不会变形,望远镜有极高的分辨率。它是人类的千里眼,探索宇宙奥秘的利器。此后美国和欧空局又相继发射了“钱德拉”空间X射线望远镜和XMM空间天文台等。美国的航天飞机是目前世界上唯一一种用于在地面和近地轨道之间运输人员物资,并可重复利用的航天器。它也可以在太空中进行各种科学实验活动。

宇宙中的空间站

太空站又称为“空间站”、“轨道站”或“航天站”,是可供多名宇航员巡航、长期工作和居住的载人航天器。在太空站运行期间,宇航员的替换和物资设备的补充可以由载人飞船或航天飞机运送,物资设备也可由无人航天器运送。

1971年前苏联发射了世界上第一个太空站———“礼炮”1号,此后到1983年又发射了“礼炮”2—7号。1986年前苏联又发射了更大的太空站“和平”号,自“和平”号上天以来,宇航员们在它上面进行了大量的科学研究。还创造了太空长时间飞行的新纪录。“和平”号超期服役多年后于2001年3月19日坠入太平洋。

美国于1973年利用“阿波罗”登月计划的剩余物资发射了“天空实验室”太空站。

18.太空中的环境知识

宇宙航行是以整个宇宙空间为活动环境的,因此,我们必须对宇宙环境有一定的了解,就像汽车司机要了解道路环境,登山运动员要了解山地环境,航海人员要了解海洋环境一样。

在人类进入太空以前,对人才环境只能进推测和理沦研究。与人类对飞天的向往一样,人们构想了美丽的“天堂”,便有“上有天堂,下有苏杭”的比喻。现在我们知道,如果“天堂”是指太空的话,就生存环境来说,那是极大的谬误。

自宇宙大爆炸以后,随着宇宙的膨胀,温度不断降低。虽然随后有恒星向外辐射热能,但恒星的数量是有限的,而且其寿命也是有限的,所以宇宙的总体温度是逐渐下降的。经过100多亿年的历程,太空已经成为高寒的环境。对宇宙微波背景辐射(宇宙大爆炸时遗留在太空的辐射)的研究证明,太空的平均温度为一270。3℃。

在太空中,不仅有宇宙大爆炸时留下的辐射,各种天体也向外辐射电磁波,许多天体还向外辐射高能粒子,形成宇宙射线。例如,银河系有银河宇宙线辐射,太阳有太阳电磁辐射、太阳宇宙线辐射(太阳耀斑爆发时向外发射的高能粒子)和太阳风(由太阳日冕吹出的高能等离子体流)等。许多天体都有磁场,磁场俘获上述高能带电粒了,形成辐射性很强的辐射带,如在地球的上空,就有内外两个辐射带。由此可见,太空还是一个强辐射环境。

宇宙大爆炸后,在宇宙中形成氢和氦两种元素,其中氢占3/4,氦占1/4。后来它们大多数逐渐凝聚成团,形成星系和恒星。恒星中心的氢和氨递次发生核聚变,生成氧、氮、碳等较重的元素。在恒星死亡时,剩下的大部分氢和氦以及氧、氮、碳等元素散布在太空中。其中主要的仍然是氢,但非常稀薄,每立方厘米只有0。l个氢原于,在星际分了云中稍多一此,每立方厘米约1万个左右。我们知道,在地球大气层中,每立方厘米含有1010个氮和氧分子。由此可见,太空是一个高真空环境。

宇宙环境对人类生存影响很大。太阳辐射是地球的光和热的主要源泉。太阳辐射能量的变化会影响地球环境。如太阳黑子出现的数量同地球上的降水量有明显的相关性。月球和太阳对地球的引力作用产生潮汐现象,并可引起风暴、海啸等自然灾害。太阳的短波紫外辐射对有机体的细胞质有损害作用,幸而大气层对所有小于2900埃波长的紫外辐射有遮蔽作用。地球也受宇宙射线的影响。一些遗传学家把地质时期的某些生物突变归咎为这种离子辐射。但它在一般含量水平下对生物体的直接影响,现在还不清楚。太阳辐射的紫外线、X射线的强度变化,会影响地球上的无线电短波通信。

随着航天事业的发展,人类开始进入宇宙环境。飞行器在升空过程中,人体在超重的影响下,活动受阻,呼吸困难,血液循环减弱,并会引起精神失常,甚至死亡。飞行器进入轨道后,人处于失重状态,不能自由支配自己的行动。神经系统失去平衡,会造成操作错误。在失重的影响下,尿中钙含量增高。宇宙空间没有空气,声音不能传播,即使是相距很近,也不能对话。宇宙环境缺氧、低压,充满各种对人有害的高能宇宙射线,宇航员必须穿宇宙服。宇宙环境虽有壮观的太空星象使人感到新颖和兴奋,但毫无人间气息。

研究宇宙环境,是探索宇宙环境的各种自然现象及其发生的过程和规律,人类的空间活动同宇宙环境之间相互作用的关系,人和生物在空间飞行条件下的反应等,以便为星际航行、空间利用和资源开发提供科学依据。

太空中的环境危机

1、有一种卫星,它是没有脚的,它只能不停的飞呀飞,累了就睡在太空里。它一生只能落地一次,就是它燃料耗尽的时候……

2、做人呢,最要紧的是开心,至于有一天卫星坠落,甚至可能砸到人,谁也不想的。至于说一定要让卫星落入深海无人区,也是不能强求的。所谓吉星高照、吉人自有天相。

3、9月底美国的UARS卫星坠落不是第一次航天器坠落地球事件,自1957年人类进入太空时代以来,曾经有600多个航天器落入大气层,从未造成过地面人员伤亡。把每年落地的500颗陨石算进来,天外来客就更多了,也没砸死过人。

4、万一有人或者建筑不幸被碎片击中,根据1972年联合国《空间物体所造成损害的国际责任公约》,受害人可以向卫星的所有者提出索赔。

5、人类迄今为止发射了5000多颗航天器,除了那些深空探测、跑远了的卫星(比如“旅行者”“先驱者”等探测器),基本上最后的命运都是落叶归根,落回地球。有的体积、质量较小,就被大气层烧干净了。有的体积、质量较大,烧不干净,就要落回地球。

6、航天大国之间的航天器,你的航天器落入我的地盘,我的航天器落入你的地盘也是常有的事。有报道说,这次美国的这颗UARS卫星可能会落入曾经的太空竞赛对手俄罗斯境内(最后落入了太平洋),但在美国的科罗拉多州也发现过俄罗斯的废旧火箭残骸。加拿大甚至还遭受过俄罗斯核燃料卫星碎片的威胁。出来混的,总要还的。

7、1979年美国的“天空实验室”空间站,类似中国今天的“天宫一号”,它在坠落的时候,也是没有计算好,出现失误,一部分残骸落在了澳大利亚西部。《旧金山观察家报》(SanFranciscoExaminer)甚至开出了1万美元奖励捡到第一块碎片并送到旧金山的人,一个17岁的小伙子还真捡到并送到旧金山,赢取了大奖。而澳大利亚西部埃斯佩兰斯市则为另一片太空垃圾,向美国开出了400美元的罚单,美国宇航局2009年完成支付。还有一块出现在了当时环球小姐的选美舞台上。

8、其实比这次美国“高层大气研究卫星”坠落地球事件影响大的还有很多,比如俄罗斯“和平”号空间站坠落。当俄罗斯为“和平”号坠毁而举国悲伤的时候,美国的一家宇宙旅游公司正兴致勃勃,兜售“包机前往南太平洋观看‘和平’号坠毁全过程”的飞机票,费用是6500美元。很多宇航迷们报名参加。2001年3月,“和平”号解体,坠落在南太平洋。成功谢幕,成功地将当年最大的一枚太空垃圾,引导销毁。

9、此次废旧卫星落地事件,其实在提示人类“太空垃圾”到底要何去何从、如何对付?我们都知道一般的航天器早晚要落回地球,会被烧掉,一些则会有残骸落地,但是更多的还是在外太空飘荡,怎么办?它们已经堆积到了一个临界点,给国际空间站、航天飞机、哈勃太空望远镜等正常运转的航天器发生过碰撞,造成了威胁。

10、“凯斯勒现象”:美国宇航局前任科学家唐纳德·凯斯勒,于1978年提出的一种理论假设。该假设认为当在近地轨道的航天器密度达到一定程度时,它们会产生碰撞,形成碎片,进而形成更多碰撞,更多碎片……这意味着近地轨道将被危险的太空垃圾所覆盖。由于失去能够安全运行的轨道,人类的太空探索发射计划将难以实施。

11、2008年的动画电影《机器人总动员》(又名《瓦里》)也有一个挺震撼的画面,不仅地球表面被科技发展导致的垃圾所占领,就连外太空也是密布各种废旧航天器,形成一层太空垃圾包围圈,完全封锁了人类进一步突破大气层的外太空探索活动。这部电影再现了预言中的凯斯勒现象。

12、中国的例子,就是1970年发射的东方红一号,也是毛主席时代咱们国家很骄傲的第一颗人造地球卫星,至今仍然在外太空飘荡,难以短时间内坠落地球。上个月,中国的实践十一号04卫星入轨失败,它们都成了太空垃圾。

13、大大小小的太空垃圾是个极难解决的问题,解决它们成本高昂,现有技术不成熟,各航天大国之间缺乏协作,也没人愿意负担清扫工作,宛若温水煮青蛙,不到火烧眉毛,撞坏重要的、大型的航天器之前,推诿塞责,得过且过,只等着“凯斯勒现象”噩梦成真,太空垃圾封住地球。

19.人类探索太空的路程

无法考证,人类的飞翔之梦,究竟是源自一个沐浴阳光的白天还是默数繁星的夜晚。充斥着飞天神话的人类幼年记忆,代代相传到今天。在双脚还只能停留在大地上的时候,想象,已经达到了一个人类自己也不知道有多高、多远的地方。那是人类对太空最初的思考与渴望。人类飞向太空的梦想,有文字记载的至少有数千年。古代中国就有“嫦娥奔月”、敦煌莫高窟“飞天”图案等美丽的传说。西方航天学界认为,中国明朝人万户为人类第一个尝试用火箭飞天的人,并将月球上一座环形山命名为“万户”,以表纪念。

19世纪中叶,法国人凡尔纳的小说《从地球到月球》几乎启发了所有的现代航天先驱们,但人类对太空无限的遐想一直都停留在小说层面。进入20世纪,人们观念中关于宇宙空间的科学概念已逐渐形成,世界各国活跃着一大批航天先驱。

500多年前,波兰天文学家哥白尼用“日心说”掀起了一场轰轰烈烈的认知革命,人类才开始了对宇宙的科学审视。就在同一时代,中国的明朝官员万户——一位试图飞出天外的幻想家,却成了人类第一位飞天的真正实践者。多年后,月球上的一座环形山被命名为万户山。

科学,如同孕育在幻想中的胎儿,吮吸着幻想的营养一天天成长。

1903年,人类飞天史上的一个里程碑。那一年,莱特兄弟驾驶着他们在自行车修理车间里制造的第一架飞机“飞行者1号”,实现了人类历史上第一次成功的空中飞行。

同样在这一年,双耳失聪的俄国科学家齐奥尔科夫斯基在论文中提出了著名的“火箭公式”,论证了用火箭发射航天器的可行性。他指出:最理想的推进剂不是火药,而是液体燃料;单级火箭在当时达不到宇宙速度,必须用多级火箭接力的办法才能进入宇宙空间。

正是凭着这位“航天之父”的天才构想,一扇通往太空的科学之门打开了。1957年10月,在哈萨克的大荒原里,前苏联用火箭把第一颗人造地球卫星“斯普特尼号”送上了天。这颗直径580毫米、太空运行仅92天的小卫星,宣告着人类进入到一个空间探索的新时代。

此时,人类东西方的冷战已持续了10多年。今天,我们不可否认的是,虽然人类纯洁的飞天梦因为承载了超级大国的政治野心而变得有些沉重,但地球上两个强国之间的竞争也让人类积蓄了数千年的能量在瞬间得以爆发。

1961年4月,在9次无人飞船试验后,“东方1号”飞船载着27岁的前苏联空军少校加加林,进行了108分钟的太空旅行。这是人类历史上第一次载人航天飞行,加加林也成为人类造访太空的第一人。

同年,美国启动“阿波罗登月计划”。8年之后的7月21日,美国宇航员阿姆斯特朗就在月球上留下了人类的第一个足印。在踏上月球的一刻,人类第一位月宫使者由衷慨叹:这是个人的一小步,却是人类的一大步。

1921年12月,“现代火箭之父”美国的罗伯特·戈达德研制了人类历史上第一台液体火箭发动机。但是,戈达德的研究遇到了许多困难:缺少科研经费,挑剔的舆论界讥笑他连高中物理常识都不懂,还嘲笑他整天幻想作“月亮人”。但戈达德没有为这些困难所动摇,经过20年默默无闻的努力,终于换来了回报。1941年1月,新发动机火箭可达到2000多米的高度,载重447千克,呈现现代火箭的雏形。

二战结束后,美苏在航天领域开始展开了激烈竞争。1957年10月4日晚,一枚火箭携带着世界上第一颗人造地球卫星“斯普特尼克l号”在苏联的拜科努尔航天发射场发射成功,标志着人类航天时代的真正到来。

但是,当时的载人航天非常危险,安全指数只有50%———在苏联首次载人太空之旅的前一年里,载人飞船的6次试发有3次以悲剧告终:一次因为定位系统出故障未能返回地球;一次是发射时发生爆炸;另一次则是完成飞行任务返回时与大气层发生剧烈摩擦,导致飞船失火。

正是这些不成功的事例,苏联首次太空之旅迟迟未能定下日期。最初,被确定为苏联第一位首航太空的宇航员是邦达连科。不幸的是,1961年3月23日,邦达连科在紧张训练中,舱内燃起大火,他因严重烧伤而死亡,成为航天史上第一个遇难的宇航员。

1961年4月12日,首次载人航天发射即将开始。当时,谁也没有把握这次能成功。苏联曾有人建议让尚未生儿育女的宇航员戈尔德·季托夫来执行这次任务。当时负责载人航天研究工作的苏联宇航专家谢尔盖·科罗列夫却坚持选用经验更为老道的尤里·加加林,尽管他已是两个孩子的父亲了。临飞前,科罗列夫安慰加加林说:“尤拉,你不要紧张。不论你着陆到哪个角落,我们都能找到你。”

这话丝毫没能减少加加林108分钟太空之旅的险情:飞船气密传感器发生故障,发射前数分钟内不得不重新拧紧舱盖上的32个螺栓;通信线路一度中断,跳出个表示飞船失事的数字“3”;第三级火箭脱离后飞船急剧旋转;返回时,飞船胡乱翻滚……然而,加加林绝处逢生,奇迹般地完成人类首次太空之旅。

苏联成功发射第一颗人造地球卫星并把第一名航天使者送入太空的成就,使美国受到强烈刺激。为了打破苏联的航天优势,1961年5月25日,美国总统肯尼迪批准了航空航天局的“阿波罗登月计划”,并在国会上表示美国将在十年之内将人送上月球。

这对于当时还没有把人送上太空的美国来说是非常困难的。为了解决技术上诸多困难,美国几乎动用它的所有资源。超过2万家来自美国与其它80个国家的公司、200多所大学参与了“阿波罗计划”。有人估计,将近1000万人直接或间接参与了登月计划。

然而,即使投入如此巨大,载人登月飞行的技术还是相对落后的:通讯导航系统比现在的手机还迟钝,在紧急时候,宇航员根本无法与地面联系,只能自己来解决;人们只能吃“牙膏饭”;飞船防震系统和防辐射系统也不够完善,宇航员极有可能在太空中遭遇各种射线的毒害;微重力问题也没有得到彻底解决,宇航员极有可能肌肉萎缩、骨骼硬化,等等。

通过不断总结经验,1969年7月21日格林尼治时间12时56分,美国宇航员阿姆斯特朗走出阿波罗11号的登月舱,终于在月球上印下人类第一个脚印,迈出了“人类巨大的一步”。至此,人类探索太空的旅程翻开了新的一页。

由于载人航天工程的复杂性,决定这必然是一项充满着风险与挑战的事业。从邦达连科算起,至今已经有22名航天员献出了宝贵的生命。然而,人类在探索太空的征程中决不会停下前进的脚步,迎接探索者的必将是光辉的未来。

1971年4月,前苏联成功发射了世界上第一个试验性载人空间站——“礼炮1号”空间站。载人航天活动由此进入到规模较大、飞行时间较长的空间应用探索与试验阶段。

1975年7月,前苏联的“联盟19号”飞船和美国“阿波罗18号”飞船,在太空中成功对接。通过电视转播,全世界数以亿计的观众目睹了来自两国的两位太空使者相拥的历史画面。

1981年4月,美国发射了可以重复使用的太空运载工具——航天飞机。6年后,美国邀请欧洲航天局、日本和加拿大参加研制永久性载人空间站计划。1993年,俄罗斯的加入不仅扩大了空间站的规模,而且使这个项目成为一项真正意义上的国际性计划。

陷入疲惫竞赛的载人航天活动,似乎又找到了人类梦想的初衷。

国际空间站,一个共同探索、和平开发宇宙的平台。从飞船到空间站,人们用不懈的探索搭建起了通往“天宫”的云梯。

人类大步迈向太空的旅程中,中国人追梦的步伐一天也没有停止过。

1970年4月24日,中国第一颗人造卫星发射成功。

那一年,胡世祥30岁,是按下发射“东方红一号”卫星火箭点火按钮的操作手;戚发轫37岁,是“东方红一号”卫星的技术负责人。

33年后的10月15日,他们分别以中国载人航天工程副总指挥和载人飞船系统总设计师的身份,出现在中国首次载人航天飞行的指挥大厅里。

9时整,“长征二号F”型火箭托举着神舟五号载人飞船轰然起飞。浩瀚太空迎来了第一位中国访客——38岁的中国航天员杨利伟。在343公里的高度上,中国人第一次在自己的航天器上看到了人类美丽的地球家园。

这是中国的高度,一个崇尚独立自主的民族以自己的方式叩问天宇的高度。

从这一天起,中国成为继俄罗斯、美国在世界上第三个能够独立开展载人航天活动的国家。

神舟五号的顺利升空,不仅仅使得中国人的千年飞天梦想变为现实,更重要的是它标志着在人类探索太空的队伍中,又加入了一支强大而富于创造性的力量。

中国已形成12个型号的“长征”系列运载火箭。未来的新一代大推力运载火箭,将满足不同用途大型卫星和空间站的发射需要;中国已初步形成了返回式遥感卫星、通信广播卫星、气象卫星、科学探测与技术试验卫星、地球资源卫星、导航定位卫星等多种类型的卫星系列。将来,中国还要建立长期稳定运行的卫星对地观测体系,自主的卫星导航定位系统,以及产业化、市场化的空间应用体系;中国已启动无人月球探测的“嫦娥工程”,那轮在唐诗宋词里无数次被吟诵过的月亮,就要迎接来自中国的亲密接触。

在跨越式地实现了载人航天工程的第一步目标之后,中国正在稳步走向以交会对接为特征的第二步和更远的未来。中国的航天专家们已经在计划着实现载人航天后,着手建立太空实验室,建立包括永久性空间站在内的“地面——太空综合网”,将大型空间站发展成为空间航天基地……

在太空建立实验室的近期目标,以及太空开发的无穷远景,令所有的中国航天人,令所有爱好梦想的中国人,愉快地幻想并热切地期待着。

2005年金秋,中国第二次载人航天飞行即将起航。专家指出,如果这次任务能够顺利完成,下一步中国载人航天的目标将是航天员出舱进行太空行走……

20.关于太空的问答知识

1.在失重情况下航天员是否很难进入睡眠状态?

这是个值得讨论的问题,因为影响睡眠的原因有很多。首先,要分航天员在太空的工作是一班制还是二班制。在国际空间站和大多数航天飞机上,所有的航天员都是同时睡觉,他们将睡袋挂在自己喜欢睡的地方,如墙上、墙角、天花板上等等。当航天员实行倒班工作制时,像包括空间实验室在内的一些航天飞机上,航天员睡在一个小的铺位上,将它关闭后,可以隔绝工作室传来的噪音。开始,航天员有些不安的感觉,觉得自己躺在一个狭窄的鞋盒中,而且大多数航天员出现10-15秒的背部感到舒适的错觉。

然而,当你打算睡觉的时候,你需要习惯你的背部和侧面没有感觉,事实上你是在睡袋中漂浮着,只是用绳子将你倒挂着,因而那种使得你昏昏欲睡的重力感觉是不存在的,也有些航天员对此还不太适应。他们毫无睡意,紧张得必须吃安眠药才能睡着。另一些人即使是在这种特殊环境下也能睡得很香。

需要补充的是:如果睡觉的时候你的头部处在不通风的地方,呼出的二氧化碳会聚集在你的鼻子附近,当你血液中的二氧化碳达到一定程度的时候,脑后部的一个报警系统就会发出警告,使你惊醒,会感觉呼吸急促。这时,你走几步或换个地方,又可以沉睡了。

2.航天员在太空中穿衣服时会有什么特殊的感觉吗?

航天员的航天服除了在舒适性和安全性上有特殊要求以外,通常和我们在地球上穿的没什么差别。例如,衣服必须由防火材料制作。当在失重情况下穿航天服的时候,航天员实际上就是在衣服内漂浮,只有当衣服碰触到肌肤的时候,才会感到是穿着衣服。

3.太空中漂浮很有意思么?

航天员们都认为一旦适应微重力环境后,在太空中漂浮是非常有趣的。顺便说一下,科学家们不喜欢将微重力称为零重力,这是因为除非你正好站在围绕地球做自由落体运动太空船的中心位置,此外你就不可避免的受到来自微小的加速度和潮汐的影响,即使它们的作用很小,只有地球引力的百万分之一,我们也不能认为它是无重力或0重力。这就是我们为什么称之为失重的原因。

在微重力环境下生活是很有趣,不同人的感觉也不同。第一次参加太空飞行的航天员,在进入太空后的头两三天,约有30%-40%的人出现“空间适应性综合症”(它是运动病中的一种),其他人不会出现这种症状。血液流向上身,使鼻窦和舌充血,影响人的感觉,一周左右的时间,航天员体内就会出现适应失重的反应。

在失重情况下,脊椎由于没有重力的作用而变长了,使得人变高了(长高1-2英寸)。在失重情况下,当所有的肌肉放松的时候,就会出现大腿轻轻的向上抬起,胳膊向前方舒展开,身体略微弓着,仿佛是在水中一般。由于没有“上”或“下”的感觉,需要依靠别的标志来确定“上”和“下”,在航天飞机内部设计时,考虑用天花板和地板的不同来定位。

在微重力的情况下,航天员常常产生错觉。当航天员告诉自己的大脑哪个方向是“上”,它立刻会认为那是错觉。这样,在太空定位、转移或运动等感觉与在地面上不一样。在太空行走是非常轻松的,航天员很快就习惯到处行走和用固定足的方法将自己固定在空间站上。穿上航天服在太空中行走变得困难得多,这是因为工作服体积大,就像套上一个气球,视觉和触觉都受到了限制。

4.你可以穿多长时间的航天服?

一般可以穿5-7小时。当然也要视航天服的中的可消耗材料的情况,例如氧、电量、冷却水等。航天服简直就是小型太空船,穿航天服工作是很辛苦的。穿着的时间也与穿着者对舒适性和耐磨性要求有关。

5.如果在太空中遇到骨折或重病如何处理?

幸运的是,美国宇航局上天的120名航天员从来没有碰到这种情况。在早期曾发生过阿波罗13号航天员佛瑞德尿感染的问题及小规模的流感的问题。太空船上总会带上足够的药品以应付这些突发事件。一旦在围绕地球飞行过程中发生意外,不管是在航天飞机上或在国际空间站,都要以最快速度将航天员送回地球。美国宇航局也为国际空间站开发了一个大型的七人座的返回舱,是为在特别情况下作为“太空救护车”使用的。

如果发生骨折,在太空船上也准备了固定骨骼的器材。当人类出发进入外太空,比如在探险火星的时候,太空船上将携带医疗设备,有一名或多名航天员是经过良好的医学知识训练的,他们可以进行救护和治疗。因为在这种情况下,短期内返回地球是不可能的。可能情况下,飞船上将配备经验丰富的医生。

6.空间站可以能容纳多少人?

国际空间站最多能容纳7名航天员。航天员的人数从开始的3人增加到6人,到2003年增加到7人(但现在由于空间站上资源的问题,只有3名航天员在空间站上-译者)。当然,在一次意外中不可能所有的工作人员都立刻返回。这就是美国宇航局为什么要改进返回舱,以便比俄罗斯联盟号太空船可以容纳更多人员的原因。

7.空间站上的航天员在太空中是怎样打发业余时间的?

他们根据自己的不同喜好,各有偏重。在飞行中,他们可以各自选取自己喜欢的娱乐。有的可以利用膝上型电脑看书或给家人发邮件,有些人在听音乐或玩游戏,再有些人就是与地面的亲友打电话或与其他同事聊天。可是绝大多数航天员在刚进入空间站时,大部分业余时间是站在窗旁,眺望宇宙和注视着地球从空间站下消失。

8.国际空间站的航天员是如何挑选出来的?你对此有何看法?

任何身体状况良好,符合航天员基本要求的成年男女都可以被选拔出来参加航天员训练。要成为国际空间站的任务专家或航天员,最低要求是至少获得一所国家承认院校的工程、自然科学或数学学士学位,在这一领域有三年以上相关工作经验,更高的学位将更合适。航天飞机驾驶员至少要有1000小时的喷气式飞机的飞行经验,其视力要比专家好。竞争是相当激烈的,每两年平均有4000名申请者角逐20个名额。定期征募航天员。

9.你们是如何绘制太空图的?如何知道应该往哪个方向前进?

让我简单介绍一下,要完全理解这个复杂的问题不是一件容易的事情,因为你确实需要进入大学进行系统的学习。

最基本的是你需要知道宇宙是由三个空间构成,所以你应确定自己在这三个轴构成座标系统中的准确位置。在天文学领域,航天员是用方位角、海拔、赤经、距离和时间来绘制太空图的。

在太空飞行的时候,我们的三个座标定为X、Y、Z。然后所有的人都有一致的参照系统,即座标系统的位置和方向,以此来进行测量和定位。一般这个系统以地球中心为原点。Z轴向上,X轴和Y轴在同一平面上。有时候可以假设它是随着地球旋转,有时候它是固定在太空中。这套“参考系统也可以装载你的便携电脑上。

太空船(还有所有现在的大型飞机上)都安装了一套导航系统,可以知道在它的三个坐标附近的飞行物的运动,不断地计算飞船相对与参照系统的变化。当然,通过看所指定的靶,也可以预测其前往的方向。而且很快的,你就知道你在什么方位和前往的地方,如果偏离了设定的航线,还可以考虑进行相应的调整。

10.航天员在太空中使用什么样的餐具吃饭?它们有什么不同吗?

航天中使用的是普通的餐具,像刀、叉、勺,与地球上使用的相同。航天员吃的大部分食物和饮料可以放在容器里。不同的是,当要吃这些食物时,它们会漂浮出来。一些食物,像在制备豌豆、豆等时要加入沙司,这样它们就会粘在餐具上。食物有热菜、凉菜或冷冻的。饮料是装在一些可压挤的瓶子中,像运动饮料瓶。但是有些事情航天员很难适应,他们常抱怨在长时间的执行任务中,无法得到新鲜的蔬菜和口味清新的咖啡。

顺便提一下,在俄罗斯的和平号空间站,一旦运输的航天飞机到达,就可以得到像西红柿这样的新鲜水果和蔬菜。美国航天员ShannonLucid说,他们经常和俄罗斯航天员联欢。也许几年后,在国际空间站和火星探险队里将能吃到新鲜蔬菜。目前还无法保证提供口味清新的咖啡和汽水,但至少有一家软饮料公司已经开始开发一种在失重状态下使用的容器。此外,在航天中由于体液的转移,使航天员的味觉和嗅觉发生改变,在轨航天员经常挑选味重的食物。

11.航天员在国际空间站要待多长时间?

大多数航天员在国际空间站要连续呆90天——那是目前航天员计划的“轮岗”平均时间。有些人由于各种原因提前回来,另外一些人可能会待很长时间,特别是当要为人类探索火星提供依据,要长时间飞行以便对航天员的生活和工作进行医学研究时。值得一提的是,在太空停留时间最长时间的是一名俄罗斯内科医生ValeryPolyakov博士,他在1994年创造了这个记录,在空间站停留438天(141/2个月),在此之前是1988年创造的241天飞行记录。美国人在太空生活最长的时间是188天,也是女性航天员的世界记录,它是由ShannonLucid博士创造的。

12.为什么地球有重力而在太空却没有?

太空中是有重力的,但我知道你不是指这个。可以这样解释:重力的生成与质量有关。质量是以非常特殊的方式对太空产生影响(爱因斯坦会说,质量使太空弯曲。)这种作用是由艾萨克·牛顿发现的、被我们称为万有引力的力量来传递的。根据我们的观察万有引力学说是正确的。如果不是这样的话,阿波罗登月计划就无法实现。同样,一个物体地心引力的减少是与物体间距离的平方根成正比的。

在地球上,物体质量所产生的重力,表现出像一个“压力”作用在与地面接触的物体上,我们称之为“重量”。当没有这种接触的时候,举例来讲,在地球轨道上,飞行器没有直接与地球接触,也就没有重力。但是太空船仍然有质量,就会产生自身的重力区(当然对于小型的航天飞机就没有重力了)。

也就是说在太空中所有具有重大质量的中心的星体,像太阳、地球和其他行星,都是有地心引力的。牛顿也发现在没有加速度作用的情况下,真空中的物体可以永不停歇的沿直线运动。但是,一个物体,例如空间站,有地球拉着它时,使它在地球轨道上运转时,不能认为是处于“失重”状态;这样,在轨道上运行的空间站所出现的“失重”,并不是地心引力作用不存在,而是重力作用对它的作用消失。一旦有了阻力,大气阻力、发动机动力、旋转产生的离心加速度等等,失重现象就不见了。

13.航天飞机发射时是什么感觉?

在发射台上,由于座舱的方向和位置,航天员们是背靠背、脚朝上(航天医生规定了他们发射前处于这种状态的时间)。在舱门关闭和所有的最后检查工作已经完成后,航天员在心里默默期待着发射,在脑海中再一次回忆在过去的几年中所培训的操作程序。例如,他们上方的所有橱柜是否锁好?眼前的提示卡提醒你在紧急情况下应采取什么措施?最后倒计时到6秒,三个液态火箭推进器点燃。当航天飞机前后晃动5英尺时,你可以很明显的感到它的晃动,这时,轨道器强烈的摆动和振动起来。但是航天员听不到任何发动机发出的雷鸣般的轰响。

然后计数到零,头盔上的无线设备中传来指令:“点火、升空。”两个固态燃料火箭推动器点火,航天飞机开始冲向太空。这时候你不会感觉非常明显的加速度,与飞机起飞时的感觉差不多。火箭推动器内的燃料不是均匀地燃烧,推进过程中颠簸得厉害。整个座舱就像汽车以最大速度在鹅卵石上飞驰一样颠簸不停。

一旦推动器点着,在燃料燃尽前它们是不会停下来的。在起飞后两分钟,航天飞机排空了的容器开始脱落,噪音没有了,每个航天员不适感大为减弱。三个液态推进器的发动机里的燃料继续燃烧,发出嗡嗡声,当燃料烧尽后,航天飞机变轻了,继续保持加速度。(因为根据牛顿学说,加速度等于质量的平方。)

在升空7。5分钟时,外部的巨大容器内的燃料已经烧掉90%,航天飞机在起飞时的重量达到2000吨,而现在不到200吨,压力已经达到3g——是地球重力的3倍。发动机减速到3g’s。在这个加速度,穿着沉重航天服的航天员,呼吸变得非常困难,会下意识的呼吸和挺胸。

最后,主发动机关闭。几秒钟内,发动机的推进力降到零。航天员会突然间感到胸口的压力消失了,并有种失重感,此时,航天员已经在太空中。

14.为什么我们要建空间站?它有什么用途?

我们国家提出在地球轨道上建永久的平台有很多的理由,而且通过与其他国家的国际合作可以使我们受益非浅。

空间站提供了一种全新的提高人类生活水平的方式。现在每个人都应该知道在地球轨道上,太空提供了许多非常有用的、在地球上找不到的环境,例如失重、高真空、高温、极冷、极热、未经过滤的太阳光和可以看到地球的全貌和环境,以及用天文望远镜观察不被充满空气、云彩和污染物的大气层所阻挡的宇宙。

这些特殊的环境,可以使我们在那里进行人、动物、植物等的科学研究,得到重大的科技创新。它们也带来了新的医学突破、科技发展、新的工业产品、新的药品和很多其他的有助于我们国家保持领先地位的新的机遇和挑战。当然了,这也使我们的经济、工业、贸易和商业更具竞争优势,也创造了新的工作、知识和财富。

由于空间站可以在太空中停留很长时间,使我们能够长时间的利用这么多的太空资源,而航天飞机在太空中最多只能停留14天。空间站也可以提供更多的电能、更大面积、更多的工具和其他设备、简直就像地面上的一个大型的研究基地,产品发展中心和技术示范中心。在长时间的飞行中,空间站也可以成为人类更好地探索外太空的太空发射场、跳板和以23,000英尺/秒速度移动的发射平台。

15.要成为一名航天员在体质方面的要求是什么?

除了健康的身体以外没有特殊的要求。无论男女只要符合这些要求以及我在问题8所给出的基本资格条件,就可以申请成为候选人参加航天员训练。

16.航天服有什么不同寻常的特点?

航天服简直就是小型的太空船,它需要保证航天员在舱外活动时的健康和连续工作的需要。由于在太空中没有气压,没有氧气维持生命,人类必须有适合他们生存的环境。和航天飞机工作舱内的空气一样,航天服中的空气也是可以控制和调节的。

这样,航天服的主要功能必须为呼吸提供氧气,同时要维持身体周围的气压稳定,并使身体内血液处于液态状态。在真空或非常低的气压状态时,身体中的血液就会像高山顶上的热水一样沸腾了。

航天飞机上配备的航天服可以承受每英尺4。3磅的压力,这仅是正常大气压的三分之一(每个大气压等于14。7psi)。由于航天服内的气体是100%的氧气,而不像我们在地球的大气层只含有20%的氧气,穿上航天服的航天员要比那些在海拔10,000英尺的高山或身处海平面没有穿航天服的人呼吸到更多的氧。在离开太空船去太空工作之前,航天员要呼吸几个小时的纯氧。这是去除溶解在血液中的氮和防止当气压下降时释放出气泡的必要程序,这种情况通常称为潜水减压病。

另一方面,如果在正常大气压下呼吸纯氧过长,它就会变成对人体有害的气体。这种吸氧排氮对航天员来讲是过分的、毫无益处的和令人厌烦的等待,确实是件麻烦事,我们将航天服的内部气压设计为8。3psi,这样可以缩短吸氧排氮的时间。

航天服必须具有保护航天员免受致命伤害的作用,它除了可以防止微流星体的撞击外,航天服也要避免航天员受到太空温度极限的伤害。没有地球大气层来过滤阳光的辐射,朝向太阳的一面温度可高达250度,背向阳光的一面,就在零下250度。

航天服的主要特点是:除了靴子和手套有多层结构外,背面有生命支持系统,胸部是显示控制模块,还有就是为太空漫步者和处理紧急情况而设计的装备,特别是备用的供氧系统。这些组合成一个被称为EMU的集合体(舱外机动装置),它可以实现不同子系统之间的自由转换,无论是在正常情况下或紧急情况下都可以容易和安全地连接。

还有一些特殊装置:尿液储存器,在返回航天飞机或空间站以后将尿液输送到废物处理系统;有一个网孔状的弹性纤维制成的液体冷却和通风服,衣服前面的入口处有拉链,它6。5磅重;内衣中的冷却管内,水在不停流动着,使航天员穿上时感到很舒服。安装冷却管的原因是因为衣服内是纯氧层,它不可能像在普通空气中那样提供足够多的冷气。还有就是可装21盎司的内衣饮水袋,“探测帽”或通讯载体组合装置,供双向通讯的耳机和麦克风及预警和报警装置,及生物医学探测子系统。

在太空行走的时候,航天员绑上在地面重达310磅的单人机动装置(MMU),一个单人的氮推动器背包,它固定在航天服携带式生命保障系统上。航天员利用可调控旋转和平移的手控制器,可以准确的飞入或围绕航天器货船入坞码头运动,或自由的进入航天飞机或空间站附近的有效载荷或建筑内,也可以到达其它很多似乎遥不可及的外部区域。航天员穿着被称为“太空自行车”的MMU’s,在发射、服务、保养和找回人造卫星方面发挥了很大作用。

17.航天服是用什么材料制成?它们是怎么制作的?

我们通用的航天服/EMUs有12层夹层,每个都有其特殊的用途。从里层开始看,最里面的2层是冷冻液体构成的贴身内衣,材料是内缝管状塑料的弹性纤维,下一层是涂有尼龙的球胆层,外面包了一层达可纶织物。下面7层是防热和小陨石的保护层,由铝化的迈拉和层压的达可纶棉麻织制成。这七层的衣服外面是一层化合织物。

18.美国第一位两次进入太空的航天员是谁?

第一位两次进入地球轨道的美国人是戈登·库铂。第一次飞行:1963年5月15-16日,驾驶水星9号飞船,历时1天10小时20分钟。第二次飞行:1965年6月3-7日和皮特·康拉德一起驾驶双子座5号,历时7天10小时2分。

实际上格斯·格里森是第一个两次乘坐火箭进入太空的美国航天员。但在1961年7月21日,他第一次飞行驾驶的“自由钟”仅仅是亚轨道飞行的飞船,带着他沿抛物线飞行15分钟,高度是190公里,有五分钟处于失重状态。然后又开始了他的第二次飞行,这次他进入了地球轨道,在1965年3月23日,他和约翰·杨一起乘坐双子座3号绕地球三圈。顺便提一下,这次飞行将第一台电脑带入太空:它是每秒可运行7000次计算的小型计算机。格里森用它来计算地球轨道的变化。从那时起,航天员可以真正的飞越太空,而不是只沿着固定的轨道环绕地球飞行。

19.哈勃太空望远镜可能替代国际空间站么?

哈勃太空望远镜离国际空间站还有很大距离,首先它的轨道倾斜度是28。47度(国际空间站是51。6度),其次它的平均海拔高度是590公里。

20.航天服有多重?

航天服包括背包在内净重近280磅(在地面)。当然了在太空中它没有重量(即使什么都没有变化)。

21.为何航天员必须穿这么重的装备?

一旦航天员进入有压力的生活舱,他们就穿上地面上的人们在温暖的春天穿的衣服,通常是短裤、短袖衬衫和袜子(因为他们的脚需要一些防碰撞保护和防寒,但他们不走路,所以不需要鞋子。)们仅在发射和返回以及走出气压舱进行太空船外活动或舱外活动的时候需要穿上特殊的衣服。发射/着陆服有防火功能和在航天飞机的加压系统失控后维持身体周围的压力不变的作用。

航天员舱外活动穿的航天服要提供维持生存的氧气和压力。它们必须使航天员免受快速飞行的太空碎片的伤害,所以他们的航天服必须有压力。当他们背向阳光,远离太阳光照射变冷的时候,航天服必须保暖。衣服提供与地面、航天飞机和其他舱外活动的航天员联系的无线设备。提供太空短途行走和在黑暗中工作所需的光线,避免航天员的眼睛受太阳光的直接照射,便于携带外出工作的工具,满足航天员生理需要的食物。航天服要保证六小时无故障,可适应不同航天员的要求。你可以将它看成小型的太空船。在地球上它重达280磅,但是在太空中没有重量。

22.进入太空要花费多长时间?

航天飞机从发射、经过脱离外部罐和固体火箭,到以所谓的轨道速度到达地球轨道,大约要8.5分钟,所以它要不停的围绕地球转动。