奇妙的大脑
现代神经科学的研究指出,所有行为都是脑功能的某些表现,思维、学习、智力也不例外。因此,研究智能理论与技术必须考察一下脑的结构与功能。
脑位于颅腔内,由延髓、脑桥、中脑、小脑、间脑和大脑六大部分组成。由脊髓开始向上,依次是延髓、脑桥、小脑、中脑、间脑和大脑皮层半
球。胼胝体是联接大脑两个半球的神经纤维组织。
有时,把延髓、脑桥和小脑统称为后脑;把间脑和大脑皮层统称为前脑; 中脑位于后脑与前脑之间。
通常也把延髓、脑桥、中脑三者统称为脑干,它含有丰富的神经核。 间脑包含丘脑和下丘脑。丘脑是大脑皮质下高级感觉中枢,来自全身的
躯体浅感觉和深感觉都先在丘脑进行处理之后才到大脑皮层。下丘脑是大脑
皮质下的重要内脏神经中枢,它在大脑皮质影响下可以对内脏的活动起重要的调节作用,如水平衡、心跳、血压、呼吸、消化、内分泌、糖和脂肪的代谢、体温调节等都可以改变。
大脑由左右大脑半球组成,它笼盖在间脑、中脑和小脑的上面。左右半球之间有大脑纵裂,裂府有联接两半球的横行纤维,称为胼胝体。大脑半球表面凹凸不平,布满深浅不同的沟,沟与沟之间的隆起称为大脑回。每个半球以几条主要沟为界分为不同的叶。这些叶在功能上各有分工。
大脑半球表面被覆一层灰质,称为大脑皮质。大脑皮质由无数大小不等的神经细胞(神经元)和神经胶质细胞以及神经纤维构成。皮质的神经元和神经纤维均分层排列,神经元之间形成复杂的神经网络。由于它们联系的广泛性和复杂性,使皮质具有高度分析和综合的能力,构成了思维活动的物质基础。
大脑皮质的组织有两个重要的特点:即交叉性和非对称性。
交叉性指每个脑半球都处理与它对侧躯体的感觉与运动。从身体左侧进入脊髓的感觉信息在传到大脑皮质之前在脊髓和脑干区交叉到神经系统的右侧,脑半球中的控制区域也交叉控制对侧身体的运动。
非对称性是说两个半球虽然十分相似,但它们的结构并不完全对称,功能上也不完全相同,因为功能是按区定位的。
但功能分区定位并不是机械的一对一关系。许多功能特别是高级思维功能通常都可以分成若干子功能。这些子功能之间不仅存在串序关系,也存在并序关系。因此,对于一个特定功能的神经加工往往是在大脑的许多部位分布式进行的。正因为这个缘故,某一部位的损伤不一定会导致整个功能的完全丧失;或者即使暂时丧失了,也可能逐步得到恢复,这是因为其他组织也可以承担受损伤的那个组织的任务。事实上,皮质的各个部分都有各自的功能,每个定位区内有该功能的中枢对此功能进行整合。从纤维分布的情况可以看出,各部位的功能并不是完全独立地进行的,只是以它为主而已。
人脑的绝对重量为 1000~2000 克,男子的脑平均重为 1375 克,女子因一般全重较轻,故脑的平均重量只有 1230 克。智力发达的人,其脑重不一定
较大。相反,有时傻子的脑重量能达到 2850 克左右,而人的智力将会显著下降。
在脑的研究方面,目前主要侧重于思维和记忆的机制,但由于人脑的复杂性,所以人们只能从具有简单神经系统的昆虫和蠕虫着手。
人工智能的任务,就是研究和完善等同或超过人的思维能力的人造思维系统。
从目前研究人工智能的内容和进展情况来看,人工智能的研究工作包括计算机方法和仿生学。计算机方法是利用现有的电子计算机的硬件设备,研究计算机的软件系统,来实现计算机的图象识别、自然语言识别和机器思维等工作。这项工作,可以叫做机器智能,是人工智能的初级阶段。仿生学对人工智能的研究主要从两方面着手进行:一方面根据生理学、心理学等学科的现有成就,对人脑进行人工模拟,建立人工智能领域的大脑学说,即建立人体神经系统的各种生物模型、数学模型以及电子模型;另一方面,根据以上模型研究、设计和制造具有人体神经系统某些功能的人工智能机。按仿生学的途径来研究人工智能有两个特点:一是研究生物模型和研制人工智能机的工作相辅相成,互相促进;二是电子计算机与人工智能机的交叉和互相渗
透。电子计算机是研究人工智能的重要工具。
人工智能这一术语是 1956 年在美国的达特茅斯大学召开的世界第一次人工智能会议上由麻省理工学院的 John Mecarthy 提议而使用的。首次公开发表使用的是麻省理工学院的 Marvin Minsky(人称人工智能之父)。人工智能这一学科至今已有 40 年的历史,在国际上已确认人工智能是当代高科技的核心之一。人工智能是一个广义词,各有说法,要对人工智能作出准确的定义或给出一般性的定义是有困难的,因此可用基本含义描述:人工智能是用机器(计算机)来模仿人类的智能行为,即上面提到的机器智能。在这个含义中关键是如何理解人类的智能,“智能”词源来自拉丁语 Legere,字面意思是采集、收集和汇集,并由此进行选择。而 Intellegere 意思是从中进行选择,进而理解、领悟和认识。因此人工智能是要让机器进行收集、汇集、选择、理解、领悟和认识。现在人们所指的智能,是指人类在认识和改造客观世界的活动中,由思维活动和脑力劳动所体现的能力,即理解和解决问题的能力。
由人工智能的基本含义可知,它的研究领域是广泛的,它与其他学科是相互渗透的,属交叉学科,因此边界是模糊的。如在人工智能研究领域中的定理证明与数学、自然语言理解与语言学、认知模型与心理学、推理方法与思维学、机器人与机械学、模式识别与电子学、人工神经网络与生理学等都有交叉。另外,从人工智能学科的发展历史也可知,它所包含的分支内容也在不断变化,既有分出去的,也有新增加的。
人工智能的核心一直是该学科发展中争论的问题之一。问题争论的基本原因是因为人工智能属交叉性学科,可以从不同学科的角度研究。根据人工智能的含义可以把人类思维活动过程作为研究目标,因此 Newell 以为思维规律是人工智能的研究核心,该观点来自哲学家 Aristotle,他认为在人的思维活动中形式逻辑是一切推理活动的核心,并且 Leibnit 和 Boole 又进一步把形式逻辑符号化和数学化,从而能实现对人的思维进行运算和逻辑演绎推理。因此,早期代表人物是 Newell 和 Simen 等人,他们研究出通用问题求解程序,主要用于数学定理证明。后来又进一步研究通过计算机来模拟人类思维普遍规律,并认为只须建立一个通用的万能的符号逻辑运算体系,就能求得问题的解答。但至今这样的万能符号逻辑体系并没有研究出来,其中存在的问题是没能充分利用定义域内的专门知识,即领域专家的积累经验和启发知识,这也是促进后来研究专家系统的推动力。在这期间,Nilsson 的观点则认为在符号逻辑运算体系中的逻辑演绎方法是人工智能的研究核心。
根据人类思维规律中以形式逻辑为研究核心暴露出来的问题,心理学家则主张直接研究人类在解决问题时的实际思维活动。他们认为人类的智能行为是建立在知识基础上的,即理解和解决问题的过程是依赖于人所具有的知识行事,所谓“知识就是力量”。具有这种观点的代表人物是斯坦福大学的Feigenbanm,他认为知识是人工智能的研究核心,人类的所有智能活动,即理解和解决问题的能力,甚至学习能力都完全靠知识,并于 1977 年的第五届国际人工智能大会上提出知识工程这一名词,后来知识工程成为人工智能领域卓有成就的分支之一。知识工程的目标是智能信息处理系统,它开创了以知识为基础的专家系统,即具有知识获取、知识表达、知识处理、知识运用的智能信息处理系统,它是以人实施的信息处理为模型来构造的。
以上两种观点都是从人类思维活动的思维学和心理学的特性出发,通过
计算机软件进行宏观的智能功能模拟,把客观世界构成形式模型,在人工智能发展史上称为功能派或心理学派。
另有一派是从人脑的生理结构出发,认为大脑是一个智能问题求解系统,应把大脑构成形式模型,研究模拟思维活动的机理结构,即神经细胞、神经网络和脑模型的硬件结构系统,因此称它们为结构派或仿生学派。这方面初期研究成果有:神经网络模型,它是通过神经网络的几种基本逻辑元件来组成的;感知机,它是模仿视觉,通过学习功能进行模式识别的脑模型; 后来又研究出联想机,它是模仿脑的联想功能(联想记忆、联想识别以及联想推理)。当时由于电子学受其他学科领域技术限制,在 70 年代后期研究进
展不大。因人脑是由 100 亿个神经细胞构成的巨大神经网络系统,它是研究智能计算机的重要依据。80 年代中期以来又再度掀起神经网络的研究热潮。在人工智能研究进程中,不管是哪种观点、哪个派别,都表明人工智能
研究是极困难的,因此,还有待研究者们付出巨大的努力。人工智能的研究内容主要分为以下几个方面。