亟待开发的新能源——地热能
我们居住的地球,很像一个大热水瓶,外凉内热,而且越往里面温度越高。因此,人们把来自地球内部的热能,叫地热能。地球通过火山爆发和温泉等途径,将它内部的热能源源不断地输送到地面。人们所热衷的温泉,就是人类很早开始利用的一种地热能。然而,目前对地热能大规模的开发利用还处于初始阶段,所以说地热还属于一种新能源。
在距地面 25~50 千米的地球深处,温度为 200~1000℃;若深度达到距地面 6370 千米即地心深处时,温度可高达 4500℃。
据估算,如果按照当今世界动力消耗的速度完全只消耗地下热能,那么即使使用 4100 万年后,地球的温度也只降低 1℃。由此可见,在地球内部蕴藏着多么丰富的热能。温度分布是很规律的,通常,在地壳最上部的十几千米范围内,地层的深度每增加 30 米,地层的温度便升高约 1℃;在地下 15~ 25 千米之间,深度每增加 100 米,温度上升 1.5℃;25 千米以下的区域,深度每增加 100 米,温度只上升 0.8℃;以后再深入到一定深度,温度就保持不变了。
地球深层为什么储存着如此多的热能呢?它们是从哪里来的?对于这个问题,目前还处于探索阶段。不过,大多数学者认为,这是由于地球内部放射性物质自然发生蜕变的结果。在核反应的过程中,放出了大量的热能,再加上处于封闭、隔断的地层中,天长日久,经过逐渐的积聚,就形成了现在的地热能。值得指出的是,地热资源是一种可再生的能源,只要不超过地热资源的开发强度,它是能够补充而再生的。
通常,人们将地热资源分为四类:
第一类是水热资源。这是储存在地下蓄水层的大量地热资源,包括地热蒸汽和地热水。地热蒸汽容易开发利用,但储量很少,仅占已探明的地热资源总量的 0.5%。而地热水的储量较大,约占已探明的地热资源的 10%,其温度范围从接近室温到高达 390℃。
第二类是地压资源。这是处于地层深处沉积岩中的含有甲烷的高盐分热水。由于上部的岩石覆盖层把热能封闭起来,使热水的压力超过水的静压力, 温度约为 150~260℃之间,其储量约是已探明的地热资源总量的 20%。
第三类是干热岩。这是地层深处温度为 150~650℃左右的热岩层,它所储存的热能约为已探明的地热资源总量的 30%。
第四类是熔岩。这是埋藏部位最深的一种完全熔化的热熔岩,其温度高达 650~1200℃。熔岩储藏的热能比其它几种都多,约占已探明地热资源总量的 40%左右。
到目前为止,对于地热资源的利用主要是水热资源的开发。近年来,一些国家开始进行干热岩的开发研究和试验,开凿人造热泉就是干热岩的具体应用之一。而地压资源和熔岩资源的利用尚处于探索阶段。
我国是世界上开发利用地热资源较早的国家,发展也很快。北京就是当今世界上六个开发利用地热较好的首都之一(其它五个是法国的巴黎、匈牙利的布达佩斯、保加利亚的索菲亚、冰岛的雷克亚未克和埃塞俄比亚的亚的斯亚贝巴)。
北京地热水温大都在 25~70℃。由于地热水中含有氟、氢、镉、可溶性二氧化硅等特殊矿物成分,经过加工可制成饮用的矿泉水。有些地区的地热水中还含有硫化氢等,因而很适于浴疗和理疗。
目前,北京的地热资源已得到广泛利用。例如,用于采暖的面积已达 32
万多平方米,可节省建造锅炉房投资三百余万元,年节约煤 1.8 万吨,而且
每年还可减少烧煤取暖带来的粉尘污染 7.6 吨。现有地热泉洗浴五十多处, 日洗浴六万多人次;利用地热水养的非洲鲫鱼,生长快,肉味鲜美。北京一些印染厂还利用地热水进行印染和退浆,每年可节约煤几千吨。
除北京外,我国许多地区也拥有地热资源,仅温度在 100℃以下的天然出露的地热泉就有约三千五百多处。在西藏、云南和台湾等地,还有很多温度超过 150℃以上的高温地热田。台湾省屏东县的一处热泉,温度曾达到 140
℃;在西藏的羊八井建有我国最大的地热电站,这个电站的地热井口温度平均为 140℃,发电装机容量为一万千瓦,今后在这里还将建设更大的地热电站。
从温泉分布来看,我国地热资源主要集中在东南沿海诸省和西藏、云南、四川西部等地,形成两个温泉数量多、温度高、埋藏浅的地热带。分别称为滨太平洋地热带和藏滇地热带。前一个地热带共有温泉六百多处,约占全国热水泉总数的三分之一,其中温泉水超过 90℃的有几十处,有的还超过 100
℃;后一个地热带是我国大陆上水热活动最活跃的一个地区,有大量的喷泉和汽泉。这一地带共有温泉七百多处,其中高于当地沸点的水热活动区有近百处,是一个高温水汽分布带。此外,在我国东部的一些盆地内,也蕴藏着较丰富的地下热水,这一地区的范围很广,北起松辽平原、华北平原,南到江汉平原、北部湾海域。例如,天津市区及郊区附近有总面积近 700 平方公里的地热带,其中深度超过 500 米、温度在 30℃以上的热水井达三百八十多口,最高水温为 94℃,年总开采量近五千万吨,可利用的热量相当于三十多万吨标准煤。
地热在世界各地的分布也是很广泛的。美国阿拉斯加的“万烟谷”是世界上闻名的地热集中地,在 24 平方公里的范围内,有数万个天然蒸汽和热水的喷孔,喷出的热水和蒸汽最低温度为 97℃,高温蒸汽达 645℃,每秒喷出2300 万公升的热水和蒸汽,每年从地球内部带往地面的热能相当于 600 万吨
标准煤。新西兰约有近 70 个地热田和一千多个温泉。温泉的类型很多,有温度可达 200~300℃的高温热泉;有时断时续的间歇喷泉;还有沸腾翻腾的泥浆地。横跨欧亚大陆的地中海——喜马拉雅地热带,从地中海北岸的意大利、匈牙利经过土耳其、独联体的高加索、伊朗、巴基斯坦和印度的北部、中国的西藏、缅甸、马来西亚,最后在印度尼西亚与环太平洋地热带相接。
有人做过计算,如果把全世界的火山爆发和地震释放的能量,以及热岩层所储存的能量除外,仅地下热水和地热蒸汽储存的热能总量,就为地球上
全部煤储藏量的 1.7 亿倍。在地下三公里以内目前可供开采的地热,相当于29,000 亿吨煤燃烧时释放的全部热量。可以看出,地热能的开发与利用有着广阔的前景。
对于地热能的开发与利用,如果从 1904 年意大利建成世界第一座地热发
电站算起,已有近 90 年的历史了。但是,只有近二、三十年来地热能的开发利用才逐渐引起世界各国的普遍注意和重视。
据统计,目前世界上已有一百二十多个国家和地区发现或打出地热泉与地热井七千五百多处,使地热能的利用得到不断的扩大。地热能的利用,当前主要是在采暖、发电、育种、温室栽培、洗浴等方面。美国一所大学有三口深 600 米的地热水井,水温为 89℃,可为总面积达 46,000 多平方米的校舍供暖,每年节约暖气费 25 万美元。法国计划到 2000 年利用地热为 80 万套住宅单元供暖,每年可节省燃油一百多万吨。冰岛虽然处在寒冷地带,但有着丰富的地热资源,目前全国人口的 70%以上已采用地热供暖。
利用地热能发电,具有许多独特的优点:建造电站的投资少,通常低于水电站;发电成本比水电、火电和核电站都低;发电设备的利用时数较长; 地热能干净,不污染环境;发电用过的蒸汽和热水,还可以用于取暖或其它方面。
现在,美国、日本、独联体、意大利、冰岛等许多国家都建成了不同规模的热电站,总计约有 150 座左右,装机总容量达 320 万千瓦。
地热发电的原理与一般火力发电相似,即利用地热能产生蒸汽,推动汽轮发电机组发出电来。目前,全世界约有四分之三的地热电站是利用高温水蒸汽为能源来发电的。这种电站是将地热蒸汽引出地面后,先进行净化,除掉所含的各种杂质,然后就可以推动汽轮发电机发电;以高温蒸汽为能源的地热电站,大多采用汽水分离的方法发电;对于以地下热水为能源的电站, 一般通过一定的途径用地下热水为热源产生蒸汽,然后用蒸汽来推动汽轮发电机组发电。
另外,地热能在工业上可用于加热、干燥、制冷与冷藏、脱水加工、淡化海水和提取化学元素等;在医疗卫生方面,温泉水可以医治皮肤和关节等的疾病,许多国家都有供沐浴医疗用的温泉。
由于天然热泉较少,而且不是各地都有的,因而在一些没有天然热泉的地区,人们就利用广泛分布的干热岩型地热能人工造出地下热泉来。人造热泉是在干热岩型的热岩层上开凿而成的,世界上最早的人造热泉是在美国新墨西哥州北部开凿的,井深达 3000 米,热岩层的温度为 200℃。
美国已建造了人造热泉热电厂,发电量为五万千瓦。另外,还在洛斯阿拉莫斯国立实验所钻了两眼深 4389 米的地热井,先把水泵入井内,12 小时后再抽上来,这时水温已高达 375℃。法国先后开凿了六眼人造热泉,其中每眼井深六千米,每小时可获得温度达 200℃热水 100 吨。
目前,美国的地热发电站的装机容量已达 930 万千瓦,到 2020 年将增加
到 3180 万千瓦。
现在,随着科学技术的发展,人们开始在岩浆体导热源周围建立人工热能存积层,以便开发利用热源蒸汽的高温岩体来发电。人们预计,到本世纪末全世界地热发电的总能力可达一亿千瓦。