CHAPTER V.

To make Plates for the Daguerreotype--Determining the Time of Exposure in the Camera--Instantaneous Process for Producing Daguerreotype-- Galvanizing the Daguerreotype Plate--Silvering Solution-

- Daguerreotype without Mercury--Management of Chemicals-- Hints and Cautions--Electrotyping--Crayon Daguerreotypes-- Illuminated Daguerreotypes--Natural Colors in Heliography-- Multiplying Daguerreotypes on one Plate--Deposit in Gilding-- Practical Hints on the Daguerreotype.

TO MAKE PLATES FOR THE DAGUERREOTYPE.

I do not give the method employed by our regular plate manufacturers; this is not important, as the operator could not possibly profit by it from the fact of the great expense of manufacturing. The following will be found practical:

Procure a well planished copper plate of the required size, and well polish it, first with pumice stone and water, then with snake stone, jewelers' rouge. Plates can be purchased in a high state of preparation from the engravers. Having prepared the copper-plate, well rub it with salt and water, and then with the silvering powder. No kind answers better than that used by clock-makers to silver their dial-plates. It is composed of one part of well washed chloride of silver, five parts of cream of tartar, and four parts of table salt. This powder must be kept in a dark vessel, and in a dry place. For a plate six inches by five, as much of this composition as can be taken up on a shilling is sufficient. It is to be laid in the centre of the copper, and the figures being wetted, to be quickly rubbed over every part of the plate, adding occasionally a little damp salt. The copper being covered with the silvering is to be speedily well washed in water, in which a little soda is dissolved, and as soon as the surface is of a fine silvery whiteness, it is to be dried with a very clean warm cloth. In this state the plates may be kept for use. The first process is to expose the plate to the heat of a spirit flame, until the silvered surface becomes of a well-defined golden-yellow color; then, when the plate is cold, take a piece of cotton,

dipped in very dilute nitric acid, and rub lightly over it until the white hue is restored, and dry it with very soft clean cloths. A weak solution of the hydriodate of potash, in which a small portion of iodine is dissolved, is now passed over the plate with a wide camel's hair brush. The silver is thus converted, over its surface, into an ioduret of silver; and in this state it is exposed to light, which blackens it. When dry, it is to be again polished, either with dilute acid or a solution of carbonate of soda, and afterwards with dry cotton, and the smallest possible portion of prepared chalk: by this means a surface of the highest polish is produced. The rationale of this process is, in the first place, the heat applied dries off any adhering acid, and effects more perfect union between the copper and silver, so as to enable it to bear the subsequent processes. The first yellow surface appears to be an oxide of silver with, possibly, a minute quantity of copper in combination, which being removed leaves a surface chemically pure.

Another Method.--The best and simplest mode with which we are acquainted is to divide an earthenware vessel with a diaphragm: one side should be filled with a very dilute solution of sulphuric acid, and the other with either a solution of ferroprussiate of potash, or muriate of soda, saturated with chloride of silver. The copper plate, varnished on one side, is united, by means of a copper wire, with a plate of zinc. The zinc plate being immersed in the acid, and the copper in the salt, a weak electric current is generated, which precipitates the silver in a very uniform manner over the entire surface.

Another Method.--A piece of brass or of polished copper, brass is preferred, is perfectly planished and its surface made perfectly clean. A solution of nitrate of silver, so weak that the silver is precipitated slowly, and a brownish color, on the brass, is laid uniform]v over it, "at least three times," with a camel's hair pencil. After each application of the nitrate, the plate should be rubbed gently in one direction, with moistened bitartrate of potassa, applied with buff. This coat of silver receives a fine polish from peroxide of iron and buff. Proofs are said to have been taken on it, comparable with those obtained on French plates.

M. SOLIEL'S PROCESS FOR DETERMINING THE TIME OF EXPOSURE IN THE CAMERA.

M. Soliel has proposed the use of the chloride of silver to determine the time required to produce a good impression on the iodated plate in the camera. His method is to fix at the bottom of a tube, blackened within, a piece of card, on which chloride of silver, mixed with gum or dextrine, is spread. The tube thus disposed is turned from the side of the object of which we wish to take the image, and the time that the chloride of silver takes to become of a greyish slate color will be the time required for the light of the camera to produce a good effect on the iodated silver.

INSTANTANEOUS PROCESS FOR PROCURING DAGUERREOTYPES.

The following method of producing Daguerreotypes has by some been named as above. Most experienced operators have been long acquainted with the effect of the vapor of ammonia upon the chemically coated plate. I will here insert Mr. W. H. Hewett's plan of proceeding. This gentleman, in referring to it (published in 1845), says:

"This improvement consists in using the vapor of ammonia, as an object to accelerate the action of light upon the plate. The effect is produced upon a simple iodized plate, but still more upon a plate prepared in the ordinary way, with both iodine and bromine. By this means, the author obtained impressions instantaneously in the sunshine, and in five to ten seconds in a moderate light; and he hopes to be able to take moving objects. It can be applied by exposing the prepared plate over a surface of water, to which a few drops of ammonia have been added (sufficient to make it smell of ammonia); or the vapor can be introduced into the camera during the action. In fact, the presence of ammonia, in the operating-room, appears to have a good effect, as it also neutralizes the vapors of iodine and bromine that may be floating about, and which are so detrimental to the influences of light upon the plate."

GALVANIZING THE DAGUERREOTYPE PLATE.

In consideration of the importance of galvanized plates, I shall endeavor to give as plain and concise a manner of manipulation as possible. For some time it was a question among the operators generally, as to the beneficial result of electrotyping, the Daguerreotype plate, but for a few years past our first operators have found it a fact, that a well electro-

silvered surface is the best for producing a portrait by the Daguerreotype.

From my own experiments, I have found that a plate, by being galvanized, can be rendered more sensitive to the operation of the light in proportion of one to five, viz.: if a plate as furnished by the market, be cleaned, polished, coated and exposed in the camera, if the required time to freely develop an impression be ten seconds, a similar plate prepared in like manner and galvanized, will produce an equally well-defined image in eight seconds. In connection with this subject, there is one fact worthy of notice; a plate with a very heavy coating of pure silver, will not produce an equally developed image, as a plate with a thinner coating, hence the thin coating, providing it entirely covers the surface, is the best, and is the one most to be desired. The experiment is plain and simple. Let the slate receive a heavy or thick coating by the electrotype, then polish, coat, expose in the usual manner, and the result will be a flat, ashy, indistinct impression; when, on the other hand, the thin coating will produce a bright, clear and distinct image, with all the details delineated.

The style of battery best for the purpose has been, and now is, a question of dispute among operators; some preferring the Daniell battery to Smee's. Some claim the superiority of the first from its uniformity of action; others, of the latter, for its strength. I consider either good, and for the inexperienced would prefer the Daniell. This is more simple in its construction, while it has certainty in action. The more skillful electrotyper would prefer Smee's, and this is the one most generally in use. I would remark that the plan of galvanizing plates should be followed by every operator, and when once thoroughly tested, no one will abandon it.

SILVERING SOLUTION.

To any desired quantity of chloride of silver in water add, little by little, cyanide of potassium, shaking well at each addition, until all the cyanide is dissolved. Continue this operation, and add the cyanide, until all the precipitate is taken up and held in solution.

This solution is now ready for the plate-cup. Enough water may be added to cover any sized plate when held perpendicular in the cup. The strength of the solution may be kept up by occasionally adding the chloride of silver and cyanide of potassium. There should alway be a very

little excess of the cyanide.

The plate should be well cleaned and buffed, and the solution well stirred before it is immersed. Care should be observed to keep the solution clean, and allow no particle of dust to come in contact with the surface of the plate. The plate is now to be attached to the pole of the battery.

After remaining a short time, it assumes a blue color; take it out, rinse freely with pure water, then dry with a spirit lamp, and it is ready for buffing. Buff and coat in the usual manner. Some operators are in the practice of immersing the plate in the solution and buffing twice. This additional silvering is no improvement wherever there has been a proper first coating.

Sometimes the operator is troubled with streaks or scum on the plate. This may arise from three causes, all of which experience must teach the experimenter to avoid; first, too great an excess of cyanide in the solution; second, a lack of silver; third, the current too strong. Another annoyance arises from the solution being dirty and the dirt collecting on the surface. When this is the case, the dirt is sure to come in contact with the surface of the plate as it is plunged into the solution, and the result is a scum that it is difficult to dispose of. This can be prevented only by frequent filtering. One thing should always be borne in mind in electrotyping Daguerreotype plates--that in order to secure a perfectly coated surface, the plate should be perfectly cleaned. In this point, many who have tried the electrotype process have failed, attributing their ill success to other than the proper cause.

DAGUERREOTYPES WITHOUT MERCURY.

The following process possesses some interest, and is worthy a trial from operators. M. Natterer, of Vienna, discovered a process for obtaining proofs on iodized plates with the chloride of sulphur, without the use of mercury. A plate of silver is iodized in the usual manner, and then placed on the top of a vessel six or eight inches high, having at the bottom, in a small cup, a few drops of chloride of sulphur; it should remain exposed to the action of the vapor until the sombre yellow color is

changed to a red, after which it is brought to a focus m the camera, where it is exposed to the light in the camera, for about the time necessary to produce an ordinary daguerreotype. The plate is then taken out and examined in the camera by the light of a candle. It often occurs that no trace of the image is as yet perceptible, but if the plate is heated by placing over a spirit lamp the unprepared side, or if left for some time in the dark, or, lastly, if exposed only a few seconds to a weak, dimmed light, the positive picture then appears with all its shades. Of these three modes of bringing out the image, the second is superior to the others.

MANAGEMENT OF CHEMICALS.

It is necessary, first of all, to know that you have a chemical which is capable of producing good results when in skillful hands. For this reason it is best to prepare your own quick, after some formula which is known to be good. Those quick-stuffs which contain chloride of iodine are noted for their depth of tone while they probably operate with less uniformity than those which are destitute of it. For operating under ordinary circumstances, especially with an inferior light, probably no accelerator is more quick and sure than Wolcott's. It also produces a very fine, white pleasing picture, though lacking that depth of impression so much to be desired. The dry quick operates with surety, and its use is simple and easy, producing an impression much like Wolcott's. For those having a good and permanent light, however, we would recommend a chemical giving more body to the impression.

There is a class of accelerators called sensitives, claiming to work in from three to ten seconds, which, however, will be found very little, if any, more sensitive than this. We frequently work it with the ordinary coating in twelve and fifteen seconds. The manner in which the sensitives are worked is by coating very light. In this way, a flat, shallow picture is obtained in a few seconds; and the same can be done with any of the more volatile quicks.

It is a fact not generally known, that a plate coated in a light chemical room is more sensitive than when coated in darkness. By admitting a free, uniform light, and exposing the plate to it a few seconds after coating, then timing short in the camera, a very light, clear impression is obtained.

The time in the camera is reduced in proportion to the previous action of light. The shades, of course, are destroyed, and the tone injured; still, for taking children, we have succeeded better by this method than by the use of "sensitives." The discovery of this principle was accidental, while operating where the direct ray s of the sun, entering the window just before sunset, fell on the curtain of our dark room, rendering it very light within.

The selection of iodine is not unimportant. Reject, at once, that which has anything like a dull, black, greasy appearance; and select that which is in beautiful large crystalline scales, of a purple color, and brilliant steel lustre.

Solarization, and general blueness of all the light parts of the picture, were formerly great obstacles to success, though now scarcely thought of by first-class artists. Beginners in the art, however, are still apt to meet with this difficulty. It is occasioned by dampness in the iodine box, which causes the plate to become coated with a hydro-iodide of silver, instead of the iodide. The remedy is in drying your iodine. If in summer, you can open your box and set it in sunshine a few minutes; or if in winter, set it under a stove a short time. The true method, however, is to dry it by means of the chloride of calcium. It has such a remarkable affinity for water, that a small fragment placed in the open air, even in the dryest weather, soon becomes dissolved.

Take one or two ounces of this chemical, heat it in the drying bath, or in a hot stove, to perfect dryness; place it in a small glass toy dish, or large watch crystal, and set it in the centre of your iodine box. Take this out and heat to dryness every morning. Adopt this process, and with your mercury at a high temperature, you will never be troubled with blue pictures.

Young operators are apt to impute all want of success in operating to their chemicals, even though the cause is quite as likely to be elsewhere. Failure is quite likely to occur from dampness in the buffs, or in the polish; it is therefore necessary to be constantly on the guard in this quarter. With a view to this, always scrape your buffs with a dull knife, or with one blade of your shears, the first thing in the morning, and after brushing

them thoroughly, dry them, either in the sun, by a stove, or in the buff- dryer. It is equally important that the polish and the brush should be kept dry.

Want of success may arise from vapors of iodine or bromine in the camera box, mercury bath, or even in the buffs. It is incredible how small a quantity of these vapors will affect the effect of light when coming in contact with the plate, after or during the exposure in the camera. It is therefore necessary to be cautious not to mix chemicals, nor open your boxes or bottles in your room, but take them out to do it. Never hurry the operation through from lack of confidence in the result. The fact of anything being out of order, forms no excuse for slighting the process. If unsuccessful, do not pursue the same course every trial, but vary with a view to detect the cause of the difficulty.

In case of a long series of failures, institute a regular course of investigation, after this manner, commencing where the trouble is most likely to occur:

  1. Are the plates well cleaned?

  2. Is the iodine dry? If the impressions come out blue, you may rest

    assured it is not. Take out the iodine, wipe and dry the box, and dry the calcium.

  3. Is the quick battery of the right strength? If dry, it must change

    the plate in from six to fifteen seconds. If any of the chloride of iodine class, it may vary from five seconds to a minute. Begin by coating light, and increase on each trial, observing the effect. If the light side of the picture seems loth to come out, and shows no contrast with the dark side, it is to be inferred that your battery is too strong, and must be reduced with water or set out in the open air for a few minutes, with the lid off. If working an old battery, never renew very strong, or it will work dark and heavy. A battery, to work well, should be gradually losing strength, but never gaining. An old battery, however, may be quickened up and made to work well for some time, by adding five of six drops of sulphuric acid, repeating the quantity as often as necessary, providing always that acid be not used in manufacturing the quick.

  4. Have the plates lost their sensitiveness by being many times

exposed to mercury? Clean and burn them; but if French plates, burn light, or you spoil them.

  1. Are the buff s dry and clean? Examine the plate critically after

    buffing to detect any appearance of scum or film on the surface. If so, the longer you buff the more it shows. Scrape and dry the buffs thoroughly.

  2. Is the mercury free from scum and dirt? If not, filter. Is it also

    far enough from the coating boxes? Should be at least three feet, and kept covered.

  3. Is the mercury sufficiently heated? This is important. Long

    exposure, however, will answer the same purpose.

  4. Are your lenses clean, and in proper place?

  5. Are the tablets in focus with the ground-glass? If you can attribute

    the failure to none of these, mix a new box of some other kind of quick, say the dry, for instance. If you fail in the same manner here, take time, wash your buffs, overhaul all the chemicals, and start anew. Do not be discouraged.

There is no day so dark but that the sun will shine again. We will close with this brief summary of advice:

Clean your plates. Keep everything dry. Keep the mercury hot.

Follow these instructions carefully, and you must succeed.

HINTS AND CAUTIONS.

First of all, cleanliness should be observed. When there is dust or dirt about your room, particularly about the work-bench, failures will be frequent; for the smallest particles of rotten-stone, when allowed to come in contact with the buffs, will produce scratches on the surface of the plate, which very much injures the operation, and often causes failures.

Dust flying about the room is injurious, if allowed to fall on the plate, either before or after it has been coated, as it causes black spots which cannot be removed.

The polished plate should not be allowed to come in contact with a strong current of air, for it tends to oxidize the surface. Breathing on the surface should also be avoided, for the same reason.

The plate should, in all cases, be buffed immediately before using, and

not allowed to stand any length of time. It should be held with the polished face downward.

It is always best that the plate should be of the same temperature of the atmosphere in the room.

Keep the camera and mercury-bath perfectly free from the vapors of iodine and bromine; for the presence of the slightest degree of either of the above will injure the impression in no small degree. As a preventive, let the camera be exposed to the sun or fire for a few minutes in the morning.

Filter your mercury often, to keep the surface free from film and dust.

The hyposulphite solution should be filtered through sponge every time it is used.

The direct rays of light must not enter the camera in conjunction with those reflected from the object; or the picture will be veiled, and the color of the plate changed to a thick green.

If the plate be iodized only to a light-yellow, the result might be of a bluish or grey tinge: and this is generally the case, when the quick is new and strong, and there is an excess of it on the plate, and yet not enough to form the bromide iodide of silver; in which case it would wholly spoil the impression.

Your iodine will be found to operate more successfully, when the time required for coating the plate does not fall short of fifteen seconds, or exceed one minute.

Too quick coating can be avoided by using less iodine in your box. In the summer months, when the weather is 80 deg. and over, one quarter of an ounce, or even less, will work to advantage.

ELECTROTYPING.

I am indebted to Mr. J. H. Fitzgibbons for the following process, which he employed in producing the excellent specimens he exhibited at the Crystal Palace:

"I shall endeavor to lay down in as comprehensive a manner as possible the method by which I have been enabled to produce the most satisfactory results. I use a Smee's battery (another kind will do). After filling the cell, of common size, nearly full with water; add about quarter of an ounce of sulphuric acid. Mix this well, and let it stand for about

three hours, or until the action of the battery becomes weak, when it is in order to work with a very uniform action. Put one pound of sulphate of copper in one quart of water; stir it until the sulphate of copper is all dissolved, and then add one half ounce of sulphuric acid and a quarter of an ounce of nitric acid. This solution, well mixed, should be filtered, and it is ready for use. It is very important that the solution should be kept clean, clear, and free from all foreign substance. The above quantity of this solution will be found sufficient for electrotyping a dozen of the sixth-size plates. When it is required to be strengthened, it is only necessary to add a little of the sulphate of copper.

"With the battery prepared as above, and the solution of sulphate of copper in a vessel of proper dimensions to receive your plate, connect the galvanic current, and immerse the impressioned plate, letting it remain until a thin film of copper has been formed, then the battery can be strengthened, and the impression will be of sufficient thickness to be removed in from eight to twelve hours. An old Daguerreotype plate attached to the opposite pole of the battery (copper side towards the face of the plate to be electrotyped), will answer the same purpose as the silver- plate.

"The great difficulty in taking an electrotype impression, and preserving the original, has been attributed to the battery being too powerful. I am led to believe from practice that the principal difficulty has been in the Daguerreotype plate itself, for if we use an impression that has been taken but a few days, and taken in the usual way, we will find it difficult to succeed without spoiling both the copy and original, and so also with an old impression.

"I have found the most certain method to be as follows:-- Coat the Daguerreotype plate as usual, except use less of the accelerators, the proportion of iodine coating being greater, of course the time of exposure in the camera will be lengthened. Mercurialize it at about a temperature requiring to develop the image, from six to eight minutes, at least. Gilding the Daguerreotype has much to do towards producing a good electrotype copy. This should be done by applying a little heat, and gilding very slowly, giving a coating of gold with the greatest possible uniformity.

By this method, I have been enabled to produce any number of proofs. I have produced a dozen from one impression, and it remains as perfect as when first taken.

"By a little judgment and care the operator will be enabled to produce the electrotype copy of the Daguerreotype plate without any difficulty. The electrotype copy should be immediately put under a glass and sealed in the same manner as the ordinary Daguerreotype."

CRAYON DAGUERREOTYPES.

This process is patented in the United States, by J. A. Whipple, of Boston, and of course no honorable person will use it for his own benefit without purchasing a right.

A white back-ground is generally employed, the object being to blur the lower portion of the plate, leaving the head of the subject in relief. Every Daguerreotypist is familiar with the fact that a motion of any body between the camera and the sitter will cause a "blur." Cut a piece of thin paper and scallop it, making a semicircle. This is kept straight by means of a wire frame, and it is to be moved in front of the lower part of the body of the sitter during the time of exposure of the plate in the camera. Develop over mercury as usual, and the result will be a crayon Daguerreotype.

Another method is to have a wheel with a hole cut through it of a diameter of about 12 inches. This hole is so cut as to leave teeth resembling those of a large saw. This wheel is so arranged that it can be turned around, which should be done during the time of exposure in the camera. It must be placed between the camera and the sitter, and at such a distance from the camera as to allow such proportion of the body of the sitter be seen upon the ground-glass as is desired. It will be readily seen that by turning this wheel during the operation will produce the same result as the paper being moved in the other method. The teeth make the "blur." The side of the wheel towards the camera may be black, by which means the result will be a dark instead of a light border.

ILLUMINATED DAGUERREOTYPES.

This process is also patented, and the remarks on the preceding subject will apply in this case. The plate is prepared and exposed as in the usual method of the Daguerreotype. A white back-ground is employed. Let the

head of the sitter come in the middle of the plate, and before exposing it to the vapors of mercury, put a small mat or diaphragm, having a small hole through it, over or directly on the surface of the plate. This diaphragm should be bevelled, and the bevel should be towards the surface of the plate; this, in order to prevent too sharp a line on the impression. It will be readily seen that if an impressioned plate so covered is placed over the mercury, it will be developed on such portions only as are exposed. The principle is so familiar that further explanations are unnecessary.

NATURAL COLORS IN HELIOGRAPHY.

This subject is worthy the attention of every operator. The following process is so plain and easy of trial that any Daguerreotypist can try it. This is as given by Mr. James Campbell, and was published in Humphrey's Journal of the Daguerreotype and Photographic Arts, vol. 5, page 11. Mr. Campbell has done much to further the process announced by

M. Neipce, and his experiments have proved highly successful. The following is submitted as worthy of trial:

"The proper preparation of the chloridated plate, to enable it to receive colored impressions is an object of the first importance to those wishing to experiment on it, and consequently requires particular notice. The plate may be prepared by making it the positive pole of a battery, and letting it at the same time be immersed in chlorine water. The negative pole should be a slip of platinum. All the colors may be produced from a plate so prepared if the chlorine and water are in the right proportions; but generally one color or the other predominates, according to the amount of chlorine in the liquid. By adding the chlorides of strontian, uranium, potassium, sodium, iron, or copper to the liquid, various effects may be produced, and these bodies will be found to produce the same color on the plate that their flame gives to alcohol.

"The honor of this discovery is due to M. Neipce. Copper gives a variegated flame; hence many colors may be impressed on a plate prepared with a solution of its chloride.

"M. Neipce recommends a solution of the mixed chlorides of copper and iron, and it is with these, that I have been most successful. As the chlorides of copper and iron are not much used in the arts, they are not

generally found for sale in the shops; and it may be well to furnish those not much versed in chemistry with an easy method of preparing them.

"They may be made directly from either metal by dissolving it in hydrochloric acid; but they may be formed by a cheaper method, and by which also the acid fumes are avoided.

"Sulphate of iron or copper, or both together, may be dissolved in water and then neutralized with common crude potash, or its carbonate or bicarbonate--known commonly as pearlash and saleratus. If either of the latter be used, there will be formed sulphate of potash and a carbonate of the metal used, and there will also be a considerable effervescence of carbonic acid, which will, if care is not taken, cause the mixture to run over the vessel. After the copper or iron salt is neutralized, which is known by its ceasing to effervesce, the carbonate of the metal will settle slowly, and will at first nearly fill the vessel. The supernatant fluid, which is sulphate of potash in solution, may now be carefully poured off, and its place filled with water; this operation should be repeated several times until the water which passes off is tasteless. The carbonate of the metal rapidly changes to an oxide by contact with the air, and it will generally be found, when it is sufficiently washed, that it is at least half oxide. On adding hydrochloric acid cautiously to the mixture, a chloric of the metal will be formed, and carbonic acid will be evolved from the remaining carbonate. The chloride formed is soluble; but as there are two chlorides of these metals, and we wish to produce the one which contains the most chlorine, it is best to add the acid cautiously until the solution is decidedly acid. After filtering the solution, it is fit for use; and it should be preserved in well-stoppered bottles. The water used should be rain or distilled water.

"About one part of the mixed chlorides should be used to three or four of water.

"The battery may be either Smee's, Daniell's, or Grove's; if of either of the former, it should be of two series; if of the latter, one cup is sufficient.

"The plate on being immersed in the liquid, almost instantly takes a violet color. It should be allowed to remain from two to five minutes, according to the strength of the battery, and until it becomes nearly black.

It should now be carefully washed, and afterwards heated over a spirit lamp until it takes a cherry-red color, and it is then ready for exposure in the camera. Before speaking of exposing the plate, it may be well to speak of some difficulties which the inexperienced operator may find in preparing it. If the battery is not in good order, and a sufficient current is not passed through the solution, the plate will become coated-- and apparently almost as well as when the battery is working well-- but on exposure it will give a negative picture, and but little colored; while if the battery is in good order, the impression is invariably positive.

"Sometimes on heating the plate after washing, the surface is covered with spots or assumes a variegated appearance. This indicates that the solution is impure, or that the plate have not been thoroughly washed and are still contaminated with the soluble chlorides which are contained in the solution.

"From the fact that the plate if prepared with positive electricity gives a positive picture, while it prepared otherwise it gives a negative, it is evident that electricity plays an important part in this process. The same is true to some extent with the compounds formed with iodine, bromine. and fluorine.

"On heating the plate, the brown coating of chloride melts into a translucent enamel, and the heat should be withdrawn when a cherry-red color is produced. It the heat is continued longer, the plate assumes a lighter color, and becomes less sensitive; and the enamel will finally scale off. To produce a picture by the ordinary process of M. Neipce, unaccelerated, it should be exposed for from three to five hours to sunlight in the camera, though pictures may be procured by contact, in from fifteen to thirty minutes."

MULTIPLYING DAGUERREOTYPES ON ONE PLATE.

I have produced some interesting specimens of the Daguerreotypic art, by exposing in the camera only a portion of the sensitive plate to the action of light. When on the exposed portion an image is formed, then taking the tablet into the dark room, change ends and expose the sensitive portion, and produce another image, developing as usual. This plan is adapted for taking likenesses for lockets. Two images can be presented as

sitting side by side, by covering half the plate with black paper, and exposing as before. In this manner we have been enabled to surprise persons by exhibiting their portrait on the same plate with a stranger's. Daguerreotypists must be cautious in practicing this, as it might not be agreeable to the parties whose likenesses are together, by the above process. It is impossible to produce an impression without a line being seen where the edge of the paper prevented the operation of the light.

I have recently seen a fine specimen produced by another plan, which far exceeds the above, there being no line, or any peculiarity denoting two exposures. The specimen referred to, was a gentleman represented on one plate by two full length portraits. This was produced by using a black velvet for the background. The plate was exposed sufficient time to produce one impression, and then the gentleman assumed another position, and is repeated as looking at himself. From the fact that the time required to develop black velvet being so much longer than that for producing a portrait, we are enabled to produce the above interesting results.

DEPOSIT IN GILDING.

Regarding specks from bad water, I would remark that gilding should be made only with distilled water. Thus made, it produces very little deposit, even by long keeping. It therefore preserves its original strength, and works with great uniformity.

Every grain of deposit contains at least 7-10 its weight of gold, easily discoverable by the blowpipe. Such gilding is continually deteriorating, which with good chloride and distilled water may be prevented. Distilled water should also be used for the hyposulphite. and for cleaning plates. Any good, clear water may be afterwards used for washing off, with equally good results. I am very rarely troubled with specs, and deem this as the main reason.

With a portable still attached to a cooking stove, I obtain half a gallon of water per hour, and with very little trouble. A small tin retort or still connected with a Leibig's condenser, would not add much to the "traps" of the travelling operator, and save him many a disreputable specimen.--T. J. BAILEY.-- Humphrey's Journal.

PRACTICAL HINTS ON THE DAGUERREOTYPE.

The following is from Humphrey's Journal, vol. 5, and from the pen of Dr. WM. HARRINGTON, one of the most able writers upon the subject of the Daguerreotype in this country:

THE CAUSE OF THE DIFFICULTY THAT SOMETIMES OCCURS TO PREVENT THE PRODUCTION OF A CLEAR IMPRESSION UPON A DAGUERREOTYPE PLATE.

Beyond all doubt this is traceable to dampness. Truly this is not a new thought; but where does this dampness come from? How does it originate, and where is it located? Generally it has been referred to a point entirely remote from its real location.

This dampness exists particularly upon the surface of the plate; is obviously derived immediately from the atmosphere; and is owing to a certain relative temperature of the plate with the hygrometric condition of the atmosphere.

Whenever this relation exists between the plate and atmosphere, a precipitation of moisture takes place upon the surface of the plate, which render all efforts at polishing impracticable. This interference is not confined to the buffing operation alone, but sometimes is discoverable even in the ordinary process of scouring. Every one at all experienced in this art will remember that it is not always an easy matter for him, by scouring, to bring his plate to the desired lustre. All his efforts become unavailing; the more he rubs, the duller the surface of his plate appears; and although he renews his cotton repeatedly, still he is obliged to content himself with an unsatisfactory finish.

This relative condition is not confined to any particular season of the year, nor to any certain thermometric temperature; but may occur in summer as well as in winter; the weather being warm or cold, wet or dry, clear or cloudy, raining or shining. Under any of these circumstances, if the relation of the plate and atmosphere be such as to invite upon the plate a precipitation of humidity from the atmosphere, the prospect of producing a clear impression is quite problematical.

It is reasonable to expect this occurrence from the fact that metal is a good radiator, and radiation reduces the temperature of a metallic body

below that of the atmosphere. Consequently, if this relative condition happens, the result will be as I have stated.

Bodies may be colder than the atmosphere and yet derive no moisture from it; while at the same time the driest atmosphere is not devoid of moisture, but will part with it under certain conditions.

Assuming for granted that this relative condition between the plate and atmosphere, disposing the former to receive the humidity of the latter, constitutes the great obstacle the operator has to contend with in producing, a clear proof upon the plate, the remedy naturally suggests itself, and is very simple. It consists in merely heating the plate above the temperature of the atmosphere, previous to polishing, and retaining that temperature during the operation. Various measures might be devised to effect the desired object; one of which consists of a sheet-iron box, heated from the inside by a spirit-lamp, upon the top of which are to be kept the plates ready to undergo the process of being polished; the blocks of the swing or any other vice; or the iron bed belonging to Lewis's vice.

In cold weather, when it is necessary to keep a fire in the preparation room, all of the above may be so arranged in the vicinity of the fire as to receive the requisite degree of heat for the purpose specified.

This part of the subject, however, is left entirely for the ingenuity of the operator. No matter by hat means he accomplishes the object; all that is required is to heat the plate above the temperature of the atmosphere and retain that heat during the process of polishing.

Since the adoption of this method. in connection with my partner, T.

J. Dobyns, even in this humid climate of ours, when everything in the room is dripping with moisture, it has been attended with invariable success.

CHOICE OF PLATES, ETC.

In the great catalogue of complaints made by operators, none is more common than that alleged against the quality of plates in general use. Although the greatest diversity of opinion exists upon this subject, nevertheless the plates of every manufactory share in this universal condemnation.

To be sure it cannot be denied but that this necessary article of utility

in the photographic art has undergone a sad deterioration in quality owing to the increasing demand and great reduction in price-- the plates of the present day being by no means so heavily coated with silver as formerly-- but the complaint alluded to is not predicated so much upon the thinness of silver as upon a mysterious something which has conferred upon the plates the epithet of not good.

That this complaint is in a great measure groundless appears evident from the fact that while, with the same brand of plates one operator can work successfully, another encounters the greatest difficulty; while one is able to produce beautifully clear and altogether satisfactory results, the other labors under the troublesome annoyance of innumerable specks, large dark insensitive patches and brown map-like portions, together with divers other blemishes, sufficient to prevent him from obtaining anything like a tolerable impression.

From this wide difference in the results of the two operators using identically the same article, it is but reasonable to conclude that the complaint is founded in error; while the inference is no more than just, that the fault may be traced to a want of practical skill on the part of the complaining operator himself; rather than to the inferior quality of the plates.

The question, then, whether the plates are unfit for use, or whether those who pronounce them so understand how to use them, appears to be satisfactorily answered. It therefore becomes a matter worthy of investigation, to ascertain what superior judgment and skill one operator possesses over another which enable him to work successfully a quality of plate, pronounced by the other entirely useless.

Suppose we make a critical examination of one of the repudiated plates. From its external appearance we have little hesitation in pronouncing it to be French; indeed, this presumption is strongly corroborated by the fact that it is ornamented upon one of its corners with a brand to designate the manufactory from which it emanated.

Upon close inspection we cannot fail to notice a striking peculiarity upon the surface; the roughness is very remarkable; the planishing hammer has left amazingly visible indications of its busy work. One

would suppose the manufacturer intended the surface of the plate to represent the undulations of the sea, instead of that smooth and level character so strongly recommended by M. Daguerre.

Such a plate necessarily requires at the hand of the operator considerable labor before the surface is in a proper condition to receive a suitable polish from the buffer. The least reflection in the world should teach any one that so long as the undulatory character continues upon the surface of the plate, it is in a very imperfect condition for buffing, because the buffer cannot touch every point equally; the elevated portions alone receiving a high degree of polish while the depressed portion, from their roughness acting as nuclei, gather dust, rouge, and other foreign bodies, so detrimental to sensitiveness. The secret of the superior judgment and skill of one operator over another, is intimately connected with this point: his success depends very much upon the first process of cleaning the plate.

Let us examine the manipulation of the complaining operator. He takes one of these plates and gives it a careful scouring with rotten-stone and alcohol or any other liquid preferred for this part of the operation--that is, he gives it what he terms a careful scouring-- very gently indeed because, from the frequent trials he is in the habit of making in the camera, he fears he will rub the silver entirely away before he succeeds in obtaining a good impression. The dark patches, specks, and granular appearance resulting entirely from the unevenness of the surface of the plate, look like copper to him, and he is surprised that he should have rubbed away the silver so soon, particularly by such delicate handling.

The judgment and experience of the successful operator, however, teach him that scouring injures a plate less than buffing. He knows that unless the hammer marks be obliterated, he cannot by the buffer produce a surface of uniform polish and sensitiveness, without which a fair proof is extremely doubtful; he knows that the time employed in the preliminary operation of cleaning the plate properly is economy.

There is a style of French plates in the market, denominated heavy, which are truly excellent, if properly managed. Much patience, however, is required to remove the marks of the hammer; but with tripoli and alcohol the surface is readily cut down, and the plate is then susceptible of

a beautiful black lustre by polishing with the buffer. The complaining operator could not succeed by his own method with one of the plates; he would encounter all manner of clouds and other unaccountable phenomena; he would imagine this plate entirely worn out before it was half cleaned, and soon fix in his own estimation the reputation of the heavy plate.

In making a choice of plates, therefore, it would appear to be a matter of perfect indifference with an experienced operator what kind he would use, except so far only as the labor required in cleaning them was to be taken into consideration.

The distinction between a scale plate, a Scovill No. 1, S. F., heavy A, star, crescent, eagle, or any other brand, consists in the superior finish of some, and the thinness of the silver in the cheaper qualities.

Consequently, let the complaining operator but employ the diligence inculcated in this article, to clean his plate thoroughly, so as to bring it to a perfectly even and level surface, and he will seldom be troubled with specks, clouds, dark patches, and the host of other obstacles which heretofore have tormented him.