三、宇宙探秘

银河系有多大

在晴朗的星空中,有一条横亘天穹的光带,被人们称做“银河”。实际上它是由群星和弥漫物质集成的一个庞大天体系统,称做“银河系”。

我们知道,太阳系已经很大很大了,但太阳只不过是银河系中一颗平凡的恒星。天空中闪耀着不可胜数的星星,它们几乎每一颗都是一个“遥远的太阳”。太阳系仅仅是银河系的一个“小不点儿”。

银河系究竟有多大?银河系的发光部分直径约为7万光年,最大厚度约为1万光年,像一个中央突出四周扁平的铁饼。

银河系大约包含2000亿颗星体,其中约1000亿颗恒星,我们的太阳就是其中之一。银河系是一个典型的旋涡状星系,太阳距离银河系中心约28000光年。

银河系有三个主要组成部分:银盘、银核和晕轮。

四条巨大的旋臂环绕组成了银河系的银盘,银盘的主体是无数年轻的蓝色恒星,太阳位于人马座旋臂和英仙座旋臂之间的猎户座旋臂上。

星系的中心凸出球状部分是银核,非常明亮。这个区域主要由大量密度很高的恒星组成,主要是年龄在100亿年以上的老年红色恒星。大量的证据表明,在银河的中心区域可能存在着一个巨大黑洞。

在银盘周围的区域内弥散着晕轮,晕轮里恒星的密度很低,存在着许多由1万到100万颗老年恒星组成的星团。

如上所述,银河系够大了吧?仍不然,人们利用目前最大的天文望远镜,在“目所能及”的地方,可以找到数以亿计的庞大天体系统,与银河系属于同一层次,称为“河外星系”。人类肉眼可见的最远的天体——仙女星座,就是其中之一,它距银河系225万光年。

由十几个、几十个以至成百上千个星系积聚在一起组成更大的天体系统称为“星系团”,目前已发现有上万个星系团,距离远在70亿光年之外。

再扩展,由若干个星系团积聚在一起又构成更高一级的天体系统,称为“超星系团”。再高一个层次,称为“总星系”,即我们探测所及的所有宇宙部分。

俗话说,沧海有边,宇宙无限,银河系之于宇宙,犹如沧海之一粟,甚或不及。

银河系的结构

银河系的结构主要可分为银盘(包括旋臂)、核球、银晕,以及外围的银冕等部分。

银盘是银河系的主体,它的外形呈扁盘状,集中了银河系内的大多数恒星和星云,银盘的直径约为8万光年,中间部分较厚,厚度约6000多光年,周围逐渐变薄,到太阳附近便只剩一半厚度了。由于巨大的银河系本身也有自转,银盘中的亿万颗星球环绕银河系中心浩浩荡荡地作着旋转运动,从银盘中心向外弯曲伸展出4条旋臂,看上去犹如急流中的旋涡。所谓旋臂实际上是恒星、星际气体和尘埃的集银河系总体结构图聚区域,但这集聚着物质的旋臂并不像电风扇叶片那样固定不变,恒星始终在旋臂中进进出出,只是它们能够在运动中基本做到“收支平衡”,所以,看上去旋臂的形状保持不变。

银河系的中央部分是一个恒星分布相当致密的核球,直径约1.2万~1.5万光年,略呈椭球形状。由于大量的星云和气体尘埃的阻挡,对核球方向的天文观测十分困难,所以,人们至今对它知之甚少,但可以肯定,核球内的恒星分布是十分密集的。

银晕是在银盘外围由稀疏的恒星和星际介质组成的一个巨大包层,它的体积至少是银盘的50多倍,但质量却只占银河系的十分之一,由此可见其物质密度非常稀薄。事实上,除了那些极其稀薄的星际气体外,银晕中的物质主要是球状星团。

银冕是20世纪70年代中期才被发现的,属于银河系的最外围,它的范围可远及50多万光年以外,比银河系的主体部分要大得多。但银冕内基本上没有恒星,全由极稀薄的气体组成,所以不易准确地测定它的真正范围。

银河系中有多少个类似太阳的恒星

在我们眼中,太阳应当是众星之“王”,它体积巨大,有取之不尽的光和热。事实上,它不过是一颗中等质量的恒星而已。

恒星的质量和亮度是紧密相连的。质量越大,亮度也越大。另一方面,恒星的亮度增长要比质量增长快得多。现在知道质量最大的恒星约为太阳质量的70倍,但亮度相当于太阳的600万倍。

太阳的最大特征在于,它能使其周围的某些行星具有智慧生命存在的条件,比如地球。行星上的生命要发展到具有相当高的智慧水平,大约需要50亿年的时间。

质量比太阳大的恒星,为避免强大引力引起的坍缩而拥有相当高的中心温度。高温加速了核反应,从而使恒星的寿命大大缩短。一颗质量相当于太阳70倍的巨恒星,能够稳定地为周围行星提供生命生存条件的时间只有50万年。当恒星的质量大于1.4倍太阳时,它周围的行星不会有适宜生命存在的条件。

质量小一些的恒星周围情况如何呢?

恒星质量越小,生物域离这个恒星就越远。假设地球绕一颗质量为太阳质量1/16的恒星运转,那么地球将距新太阳30万千米。这样,新太阳对地球的引力效应将是地球对月球的15万倍。强大的引力效应会使地球的自转速度减小,使它在形成初期就将一面永远向着新太阳。在一面阴冷、一面剧热的情况下,生命根本无法存在。

科学家们估计,当恒星的质量至少为太阳质量的1/3时,引力效应才不会造成行星上不适于生命存在的条件。

由此可知,质量处于1/3~1.4个太阳质量的恒星周围适合生命生存,并可以出现智慧生命。这些恒星被称为“类日恒星”,即类似太阳的恒星。即恒星质量为太阳的1.4倍时,恒星的寿命勉强够智慧生命产生;当恒星质量为太阳的1/3时,刚好能逃离强大的引力效应的影响。

按照这一标准,在银河系中,大约有10亿颗类日恒星。

天河的来历

夏夜的晴空,银河高悬,像一条天上的河流,故此有“天河”、“河汉”之称。西方人称它为“牛奶路”。在中国境内,可以看到银河白天蝎座起,经人马座特别明亮的部分,达盾牌座而止。

银河那烟霭茫茫的景象引发诗人无穷的遐想,但是天文学家却一直难见其庐山真面目。17世纪,伽利略首先用望远镜观察银河。他发现,这是一个恒星密集的区域。后来英国人赖特提出了银河系的猜想,并具体描绘出了银河系的形状。他假定,银河系像个“透镜”,连同太阳系在内的众星位于其中。

18世纪,英国天文学家赫歇尔父子对赖特的猜想进行了验正。他们发现银河系中心处恒星很多,而离中心越远恒星越少。他们的观测表明,银河系确是一个恒星体系,并且其范围是有限的,太阳靠近银河系中心。他们估计,银河系中有3亿颗恒星,其直径为8000光年,厚1500光年。

荷兰天文学家卡普亭的观测进一步证实了赫歇尔父子关于银河系形状的观测结果。1906年,他估计银河系直径23000光年、厚6000光年;1920年,他测算的银河系直径为55000光年,厚110000光年。这一结果比赫歇尔父子的测算结果大了400倍。

1915年,美国天文学家卡普利研究了许多球状星团的变星,发现太阳并不在银河系中心,而距那里约5万光年,并朝向人马座,银河系直径有30万光年。

20世纪80年代,人们测得的银河系数据是,质量相当于2000亿个太阳的质量,直径10万光年,厚2000光年,太阳距离银河系中心2.5万光年。

太阳系是怎样产生的

一种猜想认为,最初,整个太阳系都是一片混沌状态,在这种混沌状态之中,只存在一种物质,这种物质便是星云。这种原始的星云是一种非常灼热的气态物质,这种气态物质。它迅速旋转着,先分离成圆环,圆环凝聚后形成行星,凝聚的核心便形成了太阳。这就是著名的“康德—拉普拉斯假说”,是200多年来众多的太阳系学说中的一种。

自宇宙学正式成为一种学问以来,关于太阳系的起源问题,一直都没有一种最权威的说法能够使绝大多数人信服。到今天,随着人们提出的一种又一种假说,关于太阳系的起源问题,已经有40多种说法了。“康德—拉普拉斯假说”只不过是其中比较有代表性的一种,这种说法又被称为星云说。

星云说在当时受到了普遍的拥护和认同。后来,随着人们认识的不断变化,星云说越来越受到质疑。不过,近年来,美国天文学家卡梅隆的一种说法又使得星云说重新受到了世人的关注。卡梅隆认为,太阳系原始星云是巨大的星际云氤出的一小片云,这一小片云起初是在不断的自转,同时又在自身引力的作用下不断收缩。慢慢地,它的中心部分便形成了太阳,外围部分变成星云盘,星云盘后来形成行星。

这一观点由于受到了许多世界顶级天文学家的重视而倍受世人的关注。我国天文学家戴文赛、前苏联天文学家萨弗隆诺夫、日本天文学家林忠四郎等人就是这一观点的拥护者。然而,不可否认的是,星云说无法解释太阳和各行星之间动量矩的分配问题,这一缺陷使自成一体的太阳系得大家对星云说始终抱着一种怀疑的态度。

于是灾变说便应运而生,在20世纪初,英国天文学家金斯把灾变说推到了一个前所未有的高度,使得这种学说很快引起了人们的注意。金斯提出,行星的形成,是一颗恒星偶然从太阳身边掠过,把太阳上的一部分东西拉了出来的结果。太阳受到它起潮力的作用,从太阳表面抛出一股气流。气流凝聚后,变成了行星。

除此之外,还有星子说等著名的宇宙理论。

后来杰弗里斯提出了恒星与太阳相撞说,他的这一假说,在天文学领域足足引领了30多年。

最近几年,维尔夫森对灾变说的最新解释又使得人们开始把注意力集中到灾变说上来了。维尔夫森认为,形成行星的气体流是从掠过太阳的太空天体中抛射出来的。不过这种说法马上就因为天文学家们的另一项发现而摇摇欲坠,天文学家们经过计算后认为,气体中的物质在空间弥散开来之后,不会再产生凝聚现象。这就意味着灾变说的核心在理论上是站不住脚的。

在这种情况下,“俘获说”似乎更使人着迷。最早提出这一假说的是前苏联科学家施密特来。他认为,当太阳某个时候经过气体尘埃星云时,把星云中的物质“据为己有”,形成绕太阳旋转的星云盘,并逐渐形成各个行星及其卫星。

然而这种假说在德国的魏扎克、美国的何伊伯那里又有了两个变种。

看来,各种假说都不是无懈可击的,各种假说都有一定的道理。究竟是哪一种假说更合理,恐怕还不是人类一时能够回答出来的。

太阳系的大小及其主要成员

也许你看见过日出时的情景,在你迎接早晨第一束阳光的时候,你是否知道,它从太阳照射到我们地球,已经“跑”了8分20秒了。你能想象得出太阳离我们有多远吗?要知道光线每秒钟可跑30万千米呢,它沿赤道绕地球一周,只需要七分之一秒!地球到太阳的平均距离是1.5亿千米(称为一个天文单位)。

可是,从距离远近上来说,地球还只是太阳的第三颗行星。九大行星中离太阳最远的是冥王星,它到太阳的平均距离大约是地球到太阳距离的40倍。所以,光线横贯冥王星的轨道差不多需要从早到晚一天的工夫。这个范围够大了吧?可是,冥王星的轨道还不能算是太阳系的边界。事实上,太阳系里还有一些天体,在它们远离太阳的时候,通常会大大地超出冥王星的轨道,这就是彗星。有些彗星的轨道形状扁得出奇,要经过几百年、几千年甚至更长时间之后,才能回来一次,这样算来,它们离太阳的距离就可能会超过几千亿千米。

20世纪50年代,荷兰天文学家奥尔特提出,在太阳系的外围,大约离太阳15万天文单位的地方,有一个近乎均匀的球层结构,其中有大量的原始彗星,这个球层就被称为“奥尔特云”。究竟有没有所谓的“奥尔特云”,还有待于天文学家们作进一步研究。不过,即使我们将“奥尔特云”的范围作为太阳系的大小,整个太阳系与我们所处的银河系比起来,就像是海滩上的一粒沙子。而银河系在茫茫宇宙中,充其量也只能算是大海中的一个毫不起眼的小岛!

太阳系家族是由太阳、九大行星、几十颗卫星、成千上万颗小行星和为数众多的彗星、数不清的流星体以及充满太阳系空间的行星际物质等构成的天体系统。

太阳系疆域极为辽阔。如以冥王星作为太阳系边界的话,它到太阳的距离是40天文单位,约合60亿千米。假如乘坐时速1500千米的高速飞机,从太阳到冥王星要连续飞行457年!

太阳是太阳系的中心天体,太阳系所有的成员都围绕着太阳旋转。

九大行星距离太阳由近及远的顺序是:水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。木星个头最大,是行星中的“老大哥”。而冥王星最小,是行星中的“小弟弟”。除水星和金星以外,另外七颗行星都有自己的卫星。卫星中以土卫六直径最大,约5800千米,比水星还大。

第一次发现小行星是在19世纪第一年的元旦之夜。到现在,已有8000多颗小行星正式注册编号。其实,小行星数量远不止这些,估计总数超过50万颗。

太阳系鸟瞰图彗星是太阳系中形状最为奇特、多变的一员。接近太阳时,彗头直径有的大到10万千米以上,彗尾更是长达上千万千米甚至更长,真是一个庞然大物,然而它的平均密度竟比人造真空还低得多。有人估计,太阳系中彗星总数不下10亿颗,不过每年能用望远镜看到的只有几颗或十几颗。

流星体平常看不见,只有当它们闯入地球大气层时,与大气摩擦并燃烧,就在天空中留下了一道耀眼的亮光,这就是我们看到的流星。每年落到地面的没有燃尽的流星体不下20万吨,绝大多数只有针尖般大小,有些质量较大的流星体,没烧完就落下来,这就是陨星。

行星际物质极为稀薄,它们大多集中在黄道面附近,从而形成黄道光(日出前或日落后,出现在黄道两边锥体状的微弱光芒)和对日照(在低纬度和高山地区,有时在背太阳的天空,可以看到的一个椭圆的亮斑)等天文现象。

宇宙中还有别的“太阳系”吗

除我们的太阳之外,其他恒星周围是否也存在着行星呢?这是个非常有趣的问题,它直接关系到其他天体上有没有可能存在生命的问题。因为,生命只可能生存在那些围绕恒星旋转,并且具备生存条件的行星上。

长时期以来,科学家一直在努力寻找我们太阳系以外的“太阳系”。比较早提到的是距离我们5.9光年的蛇夫座巴纳德星。美国天文学家范德坎普分析了1938年以来有关这颗星的全部资料后,一直坚持认为它周围存在着2颗行星级天体,质量分别是木星的一半和一半多些,也有人认为是3颗行星而不是2颗。当然,反对范德坎普观点的也大有人在。

在过去很长一段时间里,不断有消息说,发现某颗某颗恒星周围可能有行星,到了20世纪80年代,这类消息更是接连不断。可是,其中有的被认为可能只是处于演化初期阶段的行星“胎儿”,有的真实性仍有争议,有的则被完全否定了。

真正发现太阳系外行星的历史是从1995年开始的,这年的10月,两位瑞士天文学家发现“飞马座51号”星周围存在着一颗行星类天体,它被命名为“飞马51B”。三个月后,两位美国天文学家发现“室女座70号”星和“大熊座47号”星周围也存在行星类天体,它们分别被称为“室女70B”和“大熊47B”。从那时起到现在,被确认为是太阳系外行星的天体,至少已找到了10颗以上,可说是硕果累累。一个非常值得注意的情况是:这些被认为是行星的天体,比我们原先想象的要复杂得多,它们有的表面温度比较高,有的绕主星的轨道偏心率比较大。可以肯定,这样的行星上是不可能存在生命的。

具有重要意义的是,在离我们太阳系不算远的地方,也存在着类似于我们太阳系这样的“太阳系”。因此,我们不难想象,光是在银河系中,就可能存在着为数众多的“太阳系”。

太阳系只有九大行星吗

太阳系有几颗行星?大多数人都会毫不犹豫地回答:九颗。内行一点的人甚至更进一步,明确地说出这九大行星的名称来。

但是,现在天文学家却不满足于这个答案了。他们在想:太阳系是否只有九大行星?有没有第十大行星呢?

为什么有人会认为太阳系存在第十颗行星的可能呢?其实,道理也不复杂,只不过是类似规则的推理而已。

1781年,威廉·赫歇耳发现天王星后,天文学家们注意到,天王星在绕太阳运行时,总是偏离轨道,这表明其附近还有星体存在。于是,1846年,人们发现了海王星。

接着,天文学家又发现,海王星的运行轨道也不规则。果然,1930年,冥王星被发现了。可是,科学家们发现,冥王星的体积和质量根本不可能对海王星和天王星的运行产生较大的影响,这两者的不规则运行可能另有他因。很自然地,有人提出,太阳系中不仅有九大行星,很可能在距离太阳的遥远处还有第十大行星存在。

这“第十大行星”被人们称为冥外行星。人们对它进行了种种猜测,有人认为它与太阳大小相仿,在距离冥王星80亿千米之外运行;还有人认为它的质量为太阳的10倍,距太阳160亿千米。

20世纪90年代初,科学家又提出了两种说法:一种认为冥外行星位于距太阳150亿千米处,质量为地球的124倍;另一种则认为它的体积与质量都相似于天王星,距离太阳800亿千米。

目前,关于第十大行星的探索又有了新的进展。科学家们认为,第十大行星并非远在冥王星之外,而是在我们的地球轨道上,是地球的孪生兄弟,体积与地球差不多,其位置在太阳的背面,而且绕太阳公转的速度与地球完全相同,即地球轨道上的同步行星,所以从地球上看,它永远在太阳背面,人类一直不能发现它。

目前,科学家们正致力于找到地球的这个孪生兄弟——如果它真的存在的话。以现有的技术能力而言,完全可以发射一颗人造卫星来证明其是否存在。

九大行星排成“十字连星”会引起灾难吗

我们知道,太阳系的九大行星在各自的轨道上,以不同的周期绕太阳运转。有时太阳和九大行星会出现一些有趣的排列。例如,1982年,九大行星运行到太阳同一侧的一个扇区内,从太阳看去,九大行星好像一连串的珠子,形成罕见的天象“九星连珠”。1999年8月18日,九大行星将以地球为中心排列成所谓的“十字连星”。这些都是天体运行过程中的自然现象,完全符合人们早就总结出来的行星运动三定理和牛顿万有引力定律。

但是,这些现象却被有些人广为宣传。他们危言耸听,著书立说,说什么“人类的大灾难到了”。这些“预言”所谓的“科学依据”是,当九大行星排列成“九星连珠”和“十字连星”时,它们的电磁场和万有引力叠加在一起,会引起地球上洪涝、地震、火山爆发等一连串大灾难,甚至可以突然刹住地球的自转,将地球扯破。

许多严肃的科学家对此据理反驳。由于其他八大行星离地球很远,即使它们真正排成一条直线,而不是“看起来排成一列”,它们对地球的起潮力总和还不到月球起潮力的十万分之一。这样算来,最多可使海潮增高0.06毫米。如果这些行星不是排成一条直线,而是排成什么“十字连星”,那么它们对地球的万有引力,将互相抵消掉一部分甚至全部,其影响更是子虚乌有。至于电磁场的影响更是微不足道。

事实是揭穿谎言的最有力武器。“九星连珠”和“十字连星”都如期发生了,地球还是好好地按照自己的运动轨道,一面自转一面绕着太阳公转,地球上也没有出现什么重大的异常情况。

科学家指出,宇宙中的天体对地球的影响是一个长期的过程。例如,太阳将来会膨胀成一颗红巨星,那时,地球有可能被吞没,但这至少是50亿年后的事。又比如,地球的自转的确在变慢,地球最初形成时自转一周只要3个多小时,经过几十亿年的漫长过程,现在自转一周是23小时56分,将来还会慢下去,大约是每过100年,1天要加长0.001秒,直到“1天”等于1030小时(大约相当于现在43天)。这也没什么好大惊小怪的,因为等到“1天”增加到1000多小时,还得过2000多亿年呢!那时,太阳早已不存在了。

自古以来,经常有人别有用心地预言各种“大灾难”会出现,并为它们披上科学的外衣。只要掌握了科学知识,就可以识破其本来面目,而不必为几十亿年后的事情忧心忡忡。

太阳的光和热来自哪里

太阳是太阳系中最大的天体,包含了太阳系将近98%的质量。就体积而言,需要109个地球才能填满太阳的横截面,而它的内部则能容纳超过130万个地球。

而我们最为关心的问题是,偌大一个太阳,每时每刻源源不断地输出光和热,这些光和热来自于哪里呢?

太阳的光和热来自于其核心部分。太阳的核心温度高达1500万℃,压力超过地球的340亿倍,这里不停地发生着核聚变。

核聚变导致四个质子产生一个α粒子或氦原子核。α粒子的质量比四个质子小0.7%,亏损的质量转化成了能量并被传输到太阳的表面,并通过辐射散发出光和热。

太阳核心的能量需要经过几百万年才能到达它的表面。每秒钟有7亿吨的氢被转化成氦。在这一过程中,约有500万吨的净质量被转化成能量释放,因此使太阳能够发光。

太阳的发光并不是人们所想象的燃烧,而是依靠原子能来发光的。太阳产生的七彩光和光谱。我们见到的太阳表面称为光球层,温度为6000℃。由于光球层的剧烈活动,其表面呈现斑驳的特征。在光球层的某些区域,温度比周围稍微低一些的,便是黑子。

光球层的上面是色球层,外层温度高达几万摄氏度。色球层可见太阳耀斑。耀斑是太阳黑子上方的、突发短寿命(有的只有几分钟)的明亮物,又称色球爆发。大的耀斑事件会发射出X射线、紫外辐射、射电辐射,并抛出高能电子,会对地磁场造成影响。

太阳大气的最外层称为日冕。日冕区域有日珥,日珥是色球层上部产生的巨大火焰。日冕的最外层向太空伸展并辐射出从太阳产生的粒子。日冕比较暗,只能在日全食时才能看到。

太阳的年龄约为46亿年,据推算,它还可以继续燃烧约50亿年。在其存在的最后阶段,太阳中的氦将转变成重元素,太阳的体积也将开始不断膨胀,直至将地球吞没。

在经过1亿年的红巨星阶段后,太阳将突然坍缩成一颗白矮星——所有恒星存在的最后阶段。

太阳元素有哪些

1868年8月18日,印度发生了一次日全食。法国经度局研究员、米顿天体物理现象台长詹森为了抓住这千载难逢的观测机会,特意带着他的考察队专程赶往印度观测,希望弄清日珥现象产生的原因。他在观测日全食时发现太阳的谱线中有一条黄线,并且是单线。而钠元素的谱线是双线,所以詹森肯定它不是早就发现的那种钠元素,第二天的观测也证实了这一点。

詹森把太阳中存在又一新元素的重大发现写信通知了巴黎科学院,1868年10月26日这一天,詹森收到了另一封内容相同的信,那是英国皇家科学院太阳物理天文台台长洛克耶寄来的。两个著名科学家不约而同地发现,使人们确认了这是一个新元素。这就是在地球上发现的第一个太阳元素——氦。后来,人们在地球上也发现了氦元素。

在1869年和1870年,科学家们又进行了两次日全食观测,人们又发现了一条绿色的谱线,天文学家们证实这也是一种新元素,并给它命名为“氪”,但这个元素后来没有被列入化学元素周期表。瑞典光谱学家艾德伦经过七十多年的研究,发现“氪”不过是一种残缺的铁原子——铁离子。它是失去9~14个电子的铁,是一种极其特殊环境下的铁。

经过长期的观测,科学家们发现,太阳上元素最多的是氢和氦,比较多的元素有氧、碳、氮、氖、镁、镍、硫、硅、铁、钙等10种,还有六十多种含量极其稀少的元素。到20世纪80年代,科学家们认定的太阳上的元素有73种。此外还有从氢到氦19种元素可能存在,其中包括9种放射性元素。

太阳上到底有多少种元素,相信随着探测技术的进步,这个谜很快就能解开。

什么是太阳风

太阳也“吹风”,这就是太阳风。

太阳风的名称是20世纪50年代提出来的,关于它的可能存在,好几百年前就有人这么想了,直接证据就是彗星的尾巴。

太阳风的产生及运动示意图在任何时候和任何情况下,彗星的尾巴总是背着太阳。换句话说,在彗星接近太阳时,好像是彗头在前拉着彗尾一起前进;在彗星离开太阳时,好像是彗尾在前拉着彗头一起离开太阳。彗尾总是冲着与太阳相反的方向延伸,根据这一现象,许多人相信,一定是太阳上在“吹风”,将彗尾“吹”向背离太阳的方向。人们还进一步推测,太阳风是从太阳上辐射出的带电粒子。

20世纪50年代末,美国天文学家帕克正确地描述了来自太阳的这股“风”。他认为:太阳大气的最外层——日冕没有明确的边界,而是处于持续不断的膨胀状态,使得高温低密度的粒子流,高速而稳定地“吹”向四面八方。

几年之后,利用人造地球卫星等所作的观测,完全证实了太阳风的存在。这股“风”可以一直吹到我们地球,在地球轨道附近,人们测得的太阳风的速度为450千米/秒左右。在太阳活动较强时,其速度还会成倍地增加。太阳风是股极为稀薄的风,比地球实验室所能制造的真空还要“真空”得多。

速度那么大的太阳风能“吹”多远呢?

考虑了空间各种物质成分对它的可能影响之后,科学家推算出它大致会“吹”到25~50个天文单位(1天文单位约为1.5亿千米),也许还更远些。

太阳风对研究行星磁层中出现的各种物理过程、行星际磁场的结构,特别是地磁扰动等现象,是一个非常重要的因素,只是现在对太阳风的观测和研究还很不够,对它本质的了解还需做大量的工作。

依产生和加速的机制不同,太阳风可分为两种:

(1)本底太阳风。又称宁静太阳风或持续太阳风。它是从日冕中持续不断地辐射出来的。这是由于日冕的温度高达106K数量级,而且随日心距变化缓慢,即日冕中粒子的热运动动能几乎不随高度变化。然而日冕粒子受到的吸引力却随日心距r的平方成反比而迅速下降,当r大到一定程度时,日冕粒子便可挣脱太阳对它的引力源源不断地跑出来,这就是本底太阳风。由此可见,这种太阳风就是日冕膨胀时形成的,并不断地从日冕得到热流而使太阳风加速。

由于日冕是高温等离子体,而太阳风是运动中的日冕,所以其主要成分是氢粒子,含几乎等量的质子和电子,还有少量的重离子。宁静太阳风的粒子数比较少,质子数仅约5个,风速约为300~450千米/秒。

(2)高速太阳风。1858年布朗首次发现每隔27天出现一次地磁扰动,后来蒙德尔等人证实了这个规律,而太阳的自转周期正好为27天,这就意味着在行星际空间存在着随太阳共转的太阳风高速流,速度可达600~900千米/秒,粒子含量比较多,每立方厘米有几千个质子。这种高速运动的带电粒子流冲到地球附近时,在地磁场中作漂移运动,在高空形成一个附加的环电流,环电流的周围必然会产生附加的磁场,从而扰乱了原有的地磁场。所以高速太阳风又称为扰动太阳风。这种太阳风的风源在哪里呢?比利时人巴特尔在1932年提出太阳风是从M(Mystery)区吹来的。

太阳风对行星际磁场的神秘作用

太阳风与磁场之间的相互作用相当复杂,但主要的根据还是磁力线“冻结”在作为等离子体的太阳风中的效应。在太阳附近(r<3R日)磁场很强,磁压大于太阳风的动压力,磁力线又植根于太阳光球,因而磁力线可带着太阳风与太阳同步自转。当r增大时,磁场便会减弱,此时太阳风的动能比磁场的能量大得多,太阳风便不能由磁场取得角动量,结果太阳风角速度小于太阳自转速度。太阳风携带着磁场活动,同时冻结的磁场向稀薄的太阳风等离子体提供压力和粘性。而较稠密的普通流体的压力和粘性是来于分子间的相互作用。太阳风本身的结构也比较复杂。如果太阳是静止的,太阳风只是直线型的流线。但太阳每27天自转一次,发自太阳赤道附近较快的气流能够赶上从邻近区域发出的较慢的气流,致使太阳等离子体的快气流与慢气流间的界面成为螺旋形,冻结在其中的磁力线,也被拉长成巨大的螺旋形。这是稳定的本底太阳风大致的大尺度结构。空间物理学家把具有这种结构的空间称为共转相互作用区,它大约在10天文单位范围内。高速太阳风将严重干扰稳定的太阳风,它们之间相互作用后将产生冲击波,所以在共转相互作用区之外的是全面并合相互作用区。

空间探测已表明太阳是这样的磁场,在北半球的磁力线是悖向太阳,而在南半球的磁力线则是指向太阳。于是就有一个向内与向外磁场间的很薄的过渡层,这个过渡层被称为行星际电流片。在太阳转动和太阳风径向运动共同作用下,电流片扭曲成一个形状像草帽帽沿的曲面。地球在黄道面上运动时,有时处在电流片的上方,有时处在下方。电流片上方的行星际磁场是离开太阳的,而电流片下方的行星际磁场则是指向太阳的。因此,在黄道面上的行星际磁场表现为扇形结构。这个扇形包含4个区域,在同一个区域内,磁场的极性相同,而相邻的区域,磁场极性则相反。两扇形的交界线为阿基米德螺线。空间探测已证实,当太阳宁静时,行星际磁场确实有着清晰的扇形结构的图像。但到目前为止,还不能确定在多大的距离上以及对日球的多大纬度上能基本保持太阳风和磁场的这种大尺度结构。不过,在太阳的低纬度区域的行星际空间内肯定有一把巨大的“磁扇”在徐徐转动着,一个扇形区域穿过地球一般要6~7天。通常在扇形边界刚通过地球时,太阳风密度达到峰值过2~3天后,出现地磁扰动,而扇形中心通过时,太阳风速度最大。在太阳活动期间,电流片的几何形状成为如此的螺旋状,以致正常的扇形结构变得完全无法辨认。

人们对黄道面以外的行星际磁场尚不清楚,因为以往人类发射的各种空间探测器无一例外地都是在黄道面内飞行。由于太阳赤道面和黄道面的交角不到7°,所以在黄道面内飞行的探测器观测不到太阳极区的全景。为了弥补这方面的不足,1990年10月,发现号航天飞机将尤里西斯太阳探测器送入木星的轨道,它的任务不是探测木星周围的空间,而是借巨大的木星引力而飞出黄道面。1992年2月,尤里西斯探测器从离木星42.8万千米处飞越,好似踏上了木星的引力“跳板”,一下子绕过木星北极,相对于黄道面作一个80°大转弯,进入垂直于黄道面、循着一个大圆弧的轨道飞行,速度达到了每秒126千米,这是迄今为止速度最快的空间探测器。它于1994年9月13日中午时分到达太阳轨道的最低点,此处正好位于太阳南极的下方。1995年5月,进入太阳北极地区,成为第一颗人造太阳极地行星。

尤里西斯探测器携带着分析太阳风、太阳磁场和高能粒子等9种科学仪器,第一次从三维立体角度探测太阳,所以取得了意想不到的重要发现。

(1)科学家原以为太阳具有一个类似于地球南北极那样简单的偶极型磁场结构,所以预期能够在极区探测到大于其他地区的磁场强度。具体地说,极区磁场强度应是赤道地区的2倍。然而,尤里西斯探测器没有发现太阳地理意义上的极区所预期的磁场强度增强的任何迹象,相反地,收集到的数据却显示太阳高纬度区的磁场强度几乎是不随纬度而变化。与此相应的是宇宙线强度随日纬的升高只是略有增加而已,并不是像科学家所预料的那样,在太阳极区上空的宇宙线强度要比赤道附近的强得多。这些现象使他们大惑不解。根据探测资料进一步分析表明,高纬度不存在像低纬度区的那种扇形结构,磁场的极性表现得相当紊乱。这说明高纬度太阳周围空间的磁场要比设想的复杂得多,因此,可能要修正人们对太阳磁场结构的原有理解。

(2)另一个意外是来自太阳极区的持续太阳风速度约为来自太阳赤道部位的持续太阳风速度的两倍。这与原先人们关于来自赤道部位的持续太阳风速度最大的预料大相径庭。另外还发现一个有趣的现象,即快、慢速太阳风在化学成分上有一些明显的差异。例如,慢速风中,镁、氧的相对含量要比快速风中高一倍。

看来,人类面对的太阳将是一个比预料的更加复杂的天体。为了在21世纪初进一步深入研究太阳风和日震,已经升空的太阳和日球观测器(SOHO)将对太阳进行为期至少3年的观测。SOHO飞行的最初阶段将掠过月球附近12次,利用月球引力调整飞船的轨道,使它进入一个绕地球和月球飞行的类似8字形的轨道,距地球最近点为2.9万千米,最远点为160万千米。按预订计划,这艘飞船将于1996年脱离地球,进入一个位于地球和太阳之间的轨道。该轨道所在的平面垂直于地球与太阳的连线,距地球160万千米,距太阳1.48亿千米,在这一位置上飞船受到地球的引力等于太阳使飞船离开地球的起潮力,即地球—太阳体系的第一拉格朗日平动点。飞船将在这一平面上绕半径为16万千米的圆形轨道作永久性运行。而轨道所在平面以地球公转的角速率绕太阳公转,所以可以探测太阳风在黄道面上往各个方向吹拂的详细情况。

太阳风对行星磁层有哪些影响

携带磁场的强劲的太阳风大约以平均每秒450千米的流速吹拂着各个行星,并越过冥王星轨道,一直到约100天文单位距离处。太阳风对行星磁场将发生影响,人类最关心的因而也是最需要了解的是它怎样改变了地磁场的结构。

(1)地磁层。原先人们以为地磁场是一种没有边界,伸向无穷远处的场。20世纪30年代,查普曼提出地球磁层的概念。他推测由带电粒子组成的太阳风吹拂地球时,受地球磁场偏转作用,在地球周围形成带电粒子包围的空腔。20世纪50~60年代,从理论上和人造卫星探测,证实了太阳风的确把地磁场压缩在局部范围内,人们把它称为磁层。磁层顶是太阳风与地球磁场的交界面,即磁层的外边界。在太阳宁静期,磁层顶向阳面的距离约10R地(R地为地球半径),在太阳活动期,则只有5~7R地。由于太阳风是超声速流体(在地球附近为10马赫),被磁层阻挡后,在磁层顶上游形成弓形冲击波,就像超音速普通流体遇到球形障碍物形成离体冲击波那样。弓形冲击波波阵面的厚度远小于太阳风粒子的平均自由程,所以被称为无碰撞冲击波。其中无粒子—粒子相互作用,即无粘滞引起的焦尔耗散,而只有波—粒子和波波相互作用,可产生粒子加速和发射电磁波。弓形冲击波面与磁层之间的过渡区被称为磁鞘,其厚度约3~4R地。有序运动的太阳风经冲击波面进入磁鞘区后,变成无规运动的等离子体湍流,这里的粒子密度和温度均增大。在地球的背阴面,太阳风把地磁场向外拉牵,形成长长的流线型尾巴,被称为磁尾,磁尾长约为1000R地。在20R地处,磁尾的南北厚度为40R地,东西厚度为50R地。在磁尾中仔在一个特殊的界面,这个界面的两边,磁力线突然改变方向,该界面被称为中性片或电流片。而向阳面的磁层则像个扁平的鸡蛋形,被称为磁头。磁头和磁尾的交界处被称为磁尖,粒子可从这里直达地球极区的电离层。总之,地磁场在太阳风的影响下成为形状像彗星,后面拖着很长尾巴的磁层。

(2)辐射带。1958年1月,美国发射了他们的第一颗人造地球卫星——探险者1号。这颗卫星虽只有4.8千克,但却取得了重要的科学成果。霍普金斯大学物理学教授范·艾伦根据卫星的探测结果,发现地球外围存在能发出辐射的区域。这是由于来自宇宙的许多带电高能粒子进入地球磁场后,被地球磁场捕获,并在磁场中作螺旋运动,发出电磁辐射。而原来高能带电粒子由于损失了能量,便不能直接闯入地球表面上来。带电粒子在地球外层被吸收并发出辐射的区域,叫作地球的辐射带,或范·艾伦带。辐射带分内、外两个环形带,其截面呈月牙形。内辐射带的纬度范围为±40°,高度约1~2R地,其中主要为能量约50MeV的质子和少量能量大于30MeV的电子,比较稳定。外辐射带的纬度范围为±50°,高度约3~4R地,主要为低能电子,密度较低,且不稳定。这两个辐射带好像为地球上的生物筑起了“安全罩”,使地球上的生物免受高能粒子的致命轰击。

(3)大尺度电流系统。由于地磁场强度随高度减小和磁力线弯曲,将使带电粒子产生漂移运动。由前者引起的叫做梯度漂移,而后者为曲率漂移。这两种漂移将导致质子由西向东和电子由东向西的运动,于是产生与地球赤道平行的环形电流。磁场越强,带电粒子运动的回旋半径越小;磁场越弱,回旋半径越大。因此粒子在上半部的回旋半径大,下半部的回旋半径小。这样必然引起电子和离子方向相反的漂移运动,由此造成电荷分离,因而产生电流。电流的方向既垂直于磁场,也垂直于磁场梯度的方向。

为了便于理解磁力线弯曲引起的曲率漂移,假设磁力线的曲率半径是常数。带电粒子一方面绕磁力线作回旋运动,另一方面沿弯曲的磁力线运动时将产生惯性离心加速度α。对于离子,顺着磁场方向看的左半圈回旋圆的运动方向和α的方向相同,离子得到加速。因而速度变大,回旋半径增大;而另半边,回旋半径却减小。因而造成离子的回旋圆的圆心向右漂移,而对于电子则是向左漂移。离子和电子的漂移方向相反也会产生电流。地磁场既有梯度,磁力线又弯曲,都会产生由西向东的环形电流,所以由梯度漂移和曲率漂移产生的电流应叠加起来。地磁场的磁力线除了弯曲外,还向两极会聚。带电粒子在这种形态的磁场中运动时将会发生什么情况呢?带电粒子在磁场中作回旋运动时,在宏观上就相当于一个环形电流,该环形电流跟它所包围的面积的乘积被定义为磁矩μ。当磁场的变化非常缓慢时,只要满足绝热条件,磁矩就是一个寝渐不变量。所谓寝渐不变量是指不是绝对的守恒量,而是一种近似不变量。运动时,W″越来越小,到了某一位置,W″=0。这表明粒子的纵向速度为零,不能再继续沿磁力线运动,而被反射回去,好像光在镜面上反射那样。因此带电粒子从强磁场区域被反射回来的现象被称为磁镜效应。带电粒子在地磁场中运动也会产生磁镜效应现象,也就是说带电粒子往往在地磁两极之间来回作螺旋运动。

在磁层中,除了辐射带中的高能粒子外,还有由低能的电子离子和中性粒子组成的等离子体,即所谓电离层。电离层的形成主要是太阳辐射进入地球大气层后,有一部分被高空大气所吸收,使分子离解和原子电离,电离程度约为0.01%。当然,宇宙线对电离层的形成也有一定的贡献,但比太阳要弱得多。电离层中的电子浓度随高度而变化可明显地划分为几个区域:D层、C层和确F层。D层最低,其电子浓度最大值出现在70~90千米的高空。D层之上是E层,电离程度更大,最大电子浓度达105/厘米3,白天浓度大,晚上浓度小,且十分有规律,是目前人们所了解最多的一个层。最上面为F层,最大电子浓度为106/厘米3。由于磁力线具有与位于那里的等离子体冻结在一起的性质,因而形成与地球一起转动的共转等离子体。但由于太阳风簇拥着磁层流动时,太阳风的一部分动量传递给磁层内的等离子体,另外由于地球磁力线被太阳风吹刮而出现形变,使等离子体产生对流,从而产生另一尺度电流——场电流。

太阳风的变化在磁层顶感应产生磁层顶电流。根据重论,在相反极性磁力线的交界处,容易产生中性片电流。这样球磁层中有4个大尺度电流系统:环电流、场电流、磁层顶电流和中性片电流。当太阳活动剧烈时,强大的太阳风将扰动磁层中的电流系统而造成地磁扰动。今后将要进一步弄清这4个大尺度电流系统所引起磁扰的不同贡献及其主要特征。

太阳风对日球层有什么作用

从太阳发出的本底太阳风约需3.5天才能到达地球,吹拂的范围远远超过地球轨道。于是,在离太阳最远的行星轨道之外的星际空间将需划出一个球面,以表示太阳风所及之处,或者说是“日射中止”的地方。球内就是由太阳占统治地位的空间,被称为日球层,或简称日球。多数科学家认为日球层的外边界是太阳系的真正边界。人们可能会想象,离太阳越来越远的空间,太阳风的速度会越来越慢,以至于太阳风粒子开始与星际物质混合起来,因而日球层将逐渐消失在一道模糊不清的弥漫的边界上。但据天体物理学家的分析,情况也许根本不是这样。

随着太阳风向外运动,它的体积越来越大,速度确是有些减小,但仍比扰动在其中传播的速度——声速大,因而不能够向上游流体传递任何速度已减小的信号。其结果是,速度快的流体猛烈碰撞前面运动慢的流体,形成了所谓终端击波,它可能是日球层中最强的且寿命最长的击波。当太阳风通过终端击波时,它的速度可能减小到大约原来值的1/4。太阳风的动能一部分转换成热能,使星际气体的温度上升。一部分动能被用来压缩磁场,使磁场强度突增到击波后的值的4倍左右。由此可见,在日球层的外边界附近存在着一种意料不到的不连续状态。人们希望能找到这巨大的球状击波面,因为这里将会发生有趣的物理现象。

星际空间中的中性原子,如氦、氧等,由于它们不受磁场或等离子体的影响,可自由地流进日球层内。后来,它们被太阳辐射或被太阳风本身离子化成为带一个单位电荷的离子。中性原子一旦成为离子后,太阳风中的磁力线就会捕捉它们,并使这些离子向外作螺旋运动。当它们越过终端击波波阵面时,巨大的磁场梯度把粒子加速到较高的能量。其中一部分被不规则的击波波阵面散射而向内偏斜,这就变成了异常宇宙线而被检测出来。

通常宇宙线粒子是完全失去电子的原子核,能量很高,而异常宇宙线粒子则是保留一些电子的离子,能量较低。这就是近20多年来被空间探测器发现的而过去未曾预料到的低能量的宇宙线组分,且已表明其强度随着与太阳的距离增大而增加。美国衣阿华大学的物理学家从1983—1992年曾两度接收到旅行者探测器天线,由于和这种异常宇宙线粒子碰撞所产生的强烈的低频无线电信号,这些信号可能就是产生在终端击波处。因为太阳爆发时会把终端激波推进推出,所以空间探测器有几次机会接收到它。根据这两次出现低频噪音爆发的时间,将终端击波边界定在离太阳90~120天文单位处。不过确切地说,目前还不知道日球层的边界离太阳有多远。也许要到21世纪的某个时候,当空间探测器越过最后的终端击波处时,这才算是进入了太阳风极为微弱的星际空间。

太阳命运之谜

太阳如一团熊熊燃烧的火焰,给人类带来光明与温暖,勇气和希望。地球上一切活动的能量,几乎都源自太阳;如果没有太阳,黑暗、严寒会吞噬整个地球,我们美丽的家园将变成死寂的世界。太阳无比灿烂的光彩,还激发人类丰富的想象能力,以至他们曾经把它当作神来崇拜。举世闻名的埃及吉萨地区的金字塔,每当春分这一天,它们的一个底边刚好指向太阳升起的地方;希腊神话中太阳神阿波罗的名字,被用来命名现代航空飞行器;古代各国的帝王们,更是把太阳看作至高无上、君临天下的象征。

宇宙中,太阳是距地球最近的恒星,日地距离只有1.5亿公里。太阳的直径大约为139.2万公里,是地球直径的109倍;太阳体积为地球的130万倍,而质量比地球大33万倍。太阳主要由氢、氦等物质构成,其中氢占73.5%,氦占25%;其他成分如碳、氮、氧等,只占太阳物质构成的1.5%。太阳核心的温度高达1500万至2000万开,每秒钟有6亿多吨的氢在那里聚变为氦;在这一过程中,每四个氢原子核聚变为一个氦原子核,而每产生一个氦原子,太阳就向外辐射一小部分能量。地球植物的光合作用,煤、石油等矿藏的形成,大气循环、海水蒸发、云雨生成等等,这一切都离不开太阳的活动。10亿年来,地球的温度变化范围很小,这说明太阳的活动基本稳定,也为生命的孕育、演化提供了极好的条件。

到目前,太阳上的氢聚变反应已进行了几十亿年,有人担心太阳的能量总有一天会耗尽。的确,太阳的能量并非取之不尽,用之不完。如果氢不断减少,氦不断产生,未来的太阳会变成什么样?

根据恒星演化理论,从恒星中心核内的氢开始燃烧到它们全部生成氦,这一过程叫做“主星序阶段”。处于主星序阶段上的恒星称之为“主序星”。不同恒星体在主星序中存在的时间是不同的,这主要取决于该恒星体的质量。天文学家爱丁顿发现:质量越大的恒星体,它为抗衡万有引力而产生的热量也越多;产生热量越多,则星体膨胀速度越快;相应地,它留在主星序中的时间便越短。拿太阳来说,它和众多的恒星一样,目前正处于主星序阶段。根据科学家计算,太阳可在主星序阶段停留100亿年左右;而目前它处于主星序阶段上已46亿年了。质量比太阳大15倍的恒星只能停留1000万年,质量为太阳质量五分之一的恒星则能存在10000亿年之久。

当一颗恒星度过它漫长的青壮年期——主序星阶段,步入老年时,会首先变成一颗“红巨星”。之所以称为“巨星”,因为它的体积巨大,在这一阶段,恒星将膨胀到比原来体积大十亿多倍的程度;称它“红”巨星,因为在恒星迅速膨胀的同时,其外表面离中心越来越远,温度随之降低,发出的光也越来越偏红。尽管温度降低,红巨星的光度却变得很大,看上去极为明亮。目前人类肉眼看到的亮星中,有许多都是红巨星。现在,我们最熟悉的一颗红巨星是猎户星座的“参宿四”,其直径达11亿公里,为太阳直径的800倍。若“参宿四”在太阳的位置发光,红光会遍及整个太阳系。

从“主序星”衰变成“红巨星”,变化不仅仅是外在的,恒星的内核也发生了很大变化——从“氢核”变成了“氦核”。我们已经知道,恒星依靠其内部的热核聚变而熊熊燃烧着,核聚变的结果是每四个氢原子核结合成一个氦原子核;在这个过程中恒星释放出大量原子能并形成辐射压,辐射压与恒星自身收缩的引力相平衡。而当恒星中心区的氢消耗殆尽,形成由氦构成的氦核之后,氢聚变的热核反应便无法在中心区继续进行。此时引力重压没有辐射压来平衡,星体中心区会被压缩,温度随之急剧上升。恒星中心的氦核球温度升高后,紧贴它的那一层氢氦混合气体相应受热,达到引发氢聚变的温度,热核反应便重新开始。于是,氦核逐渐增大,氢燃烧层也随之向外扩展(恒星星体外层物质受热膨胀,就是它开始向红巨星或红超巨星转化的过程)。转化中,氢燃烧层产生的能量可能比主序星时期还要多,但星体表面温度不仅不会升高反而会下降。原因在于:外层膨胀后受到的内聚引力减小,即使温度降低,其膨胀压力仍可抗衡或超过引力,此时星体半径和表面积增大的程度超过产能率的增长,因此总光度可能增长,表面温度却将下降。质量比太阳大4倍的大恒星在氦核外重新引发氢聚变时,核外放出的能量未明显增加,半径却增大了好几倍,因此恒星的表面温度由几万开降到三四千开,成为红超巨星。质量比太阳小4倍的中小恒星进入红巨星阶段时表面温度下降,光度也将急剧增加,这是它们的外层膨胀消耗的能量较少而产能较多的缘故。

红巨星一旦形成,就会朝恒星演化的下一阶段——“白矮星”进发。当外部区域迅速膨胀时,氦核受反作用力将强烈向内收缩,被压缩的物质不断变热,最终内核温度将越过1亿度,从而点燃氦聚变。经过几百万年,氦核也燃烧殆尽,而恒星的外壳仍然是以氢为主的混合物。如此,恒星结构比以前复杂了:氢混合物外壳下面会有一个氦层,氦层内部还埋有一个碳球。这样,恒星体(红巨星阶段)的核反应过程将变得更加复杂。其中心附近的温度继续上升,最终使碳转变为其他元素。与此同时,红巨星外部也开始发生不稳定的脉动振荡:恒星半径时而变大,时而缩小,稳定的主星序恒星将变成极不稳定的巨大火球。火球内部的核反应也会越来越趋于不稳定,忽强忽弱。此时,恒星内部核心的密度实际上已增大到每立方厘米10吨左右,可以说,在红巨星内部已经诞生了一颗白矮星。

白矮星是一种很特殊的天体,它体积小、亮度低、质量大、密度高。比如天狼星伴星(它是最早被发现的白矮星),体积比地球大不了多少,但质量却和太阳差不多!也就是说,它的密度为1000万吨/立方米左右。根据白矮星的半径和质量,可算出它的表面重力等于地球表面重力的1000万~10亿倍。在这样高的压力下,任何物体都将不复存在,连原子都会被压碎;电子也将脱离原子轨道变成自由电子。

白矮星的密度为什么这样大?我们知道,原子是由原子核和电子组成的,原子的质量绝大部分集中在原子核上,而原子核的体积很小。比如氢原子的半径为一亿分之一厘米,而氢原子核的半径只有十万亿分之一厘米。打个比方,假如原子核的大小如一颗玻璃球,那么电子轨道将在2公里以外。而在巨大的压力之下,电子将脱离原子核,成自由电子。这种自由电子气体会尽可能地占据原子核之间的空隙,从而使单位空间内包含的物质大大增多,密度大大提高。形象地说,此时原子核是“沉浸”于电子中的,没有了原先与电子的“秩序”和“距离”,科学上一般把物质的这种状态叫做“简并态”。简并电子气体压力与白矮星强大的重力平衡,一定时间内维持着白矮星的稳定;可是当白矮星质量进一步增大,简并电子气体压力就有可能抵抗不住引力而收缩,白矮星还会坍缩成密度更高的天体“中子星”或“黑洞”。

对单星系统而言,由于没有热核反应来提供能量,白矮星在发出光热的同时,也以同样的速度冷却着。经过100亿年的漫长岁月,年老的白矮星将渐渐停止辐射死去。它的躯体会变成一个比钻石还硬的巨大晶体——“黑矮星”,孤零零飘荡在宇宙空间。对于多星系统来说,白矮星的演化过程可能没有这么简单,中途有可能发生改变,这需要科学家们进行更深入细致地研究。

最近,英国曼彻斯特大学和美国国家射电天文台的科学家,在曼彻斯特举行的国际天文学联合会大会上宣布,他们使用射电望远镜拍到了1000光年外的一颗恒星向外喷发气体的图像。这是迄今科学家拍到的最精细的太阳系外恒星活动图像。对这批图像进行研究,将有助于了解恒星接近死亡时的演化过程,从而预测出太阳的未来命运。科学家们观测的这颗恒星名叫TCAM,位于鹿豹星座,是一颗年老的“变星”,其亮度以88个星期为周期进行有规律的变化。过去,科学家们每两周对TCAM进行一次观测,一直持续了88周(即该恒星的一个光变周期)。他们使用了“特长基线干涉测量”(VLBl)技术,在43GHZ频段记录恒星喷出的气体发出的射电波,结果获得了比哈勃太空望远镜所能拍到的同类图像精细500倍的图像。从中可以看出恒星表面附近气体的复杂运动,但其中有一些利用现有理论尚不能解释。一些科学家们认为,几十亿年后,太阳在生命走到尽头时会迅速膨胀,把包括地球在内的太阳系内行星“吞噬”掉。届时太阳会剧烈地脉动,像TCAM一样成为一颗变星。在脉动过程中,大量物质将被抛入星际空间,太阳的大部分质量都会损失掉,剩余部分将坍缩成一颗白矮星。在银河系中发现的大量变星表明,脉动和质量抛失是恒星死亡过程中的普遍现象,一些变星每年能够抛出相当于一个地球质量的物质。研究这种质量抛失,可以更好地了解恒星生命终结的过程,其中也包括我们的太阳。

一些科学家认为,虽然目前对恒星演化过程还不是太清楚,但基本可以肯定:大约50亿年后,太阳就会成为红巨星。那时,地球上的一切生命将不复存在。届时地面温度将比现在高两三倍,北温带夏季最高温度会接近100℃;而地球上面积巨大的海洋,也将会被蒸发成一片沙漠。预计太阳在红巨星阶段大约停留10亿年左右,光度将升高到今天的好几十倍;它的体积也将比现在更加硕大,若从地面角度观察,会发现它实际上“布满”整个天空。

这样的“世界末日”固然还非常非常遥远,但是一些人因为提前几十亿年知道了最后的“大结局”,无法掩饰内心的苦涩。因为这样一来,不仅人类,就连一切的生命形态都显得那样渺小,那么“微不足道”。他们会问:“如果生命的演进注定是一场过眼云烟,那么它还有什么意义呢?”

太阳将来也会像普通恒星一样灭亡,这是不可改变的自然规律的确,在人类看来,虽然个体生命的意义在于它的有限,但整体生命的意义似乎应该在于无限。在这个信念的支撑下,很多人认为即便没有了地球,生命也会在另一个星球上延续。人类是不会坐以待毙的!他们极有可能在此之前早已移居到太阳系以外其他适合生存的行星上了。银河系中有1000亿颗发亮的恒星,而每一恒星附近常有好几颗行星,在广袤的宇宙里又至少有1千亿个不同的银河系。从理论上讲,适宜人类生存的星球应不止一颗。1957年开始,人类便着手进行太空探险的尝试了;1995年,天文学家第一次发现太阳系之外的一颗恒星附近存在着行星;到现在,人们一共找到了50多颗太阳系以外的行星。也许其中的某一颗,会是未来人类的家园。

太阳能量之谜

太阳是地球万物生长的动力源泉。自人类诞生起,太阳就一直是人心目中光明和温暖的使者。在各国家、民族的神话故事里,太阳是不可或缺的角色。中国神话有“后羿射日”、“夸父逐日”,古代西方有阿波罗神,等等。

太阳炽热无比,这主要因为太阳每时每刻都在向外释放出巨大的能量。可以毫不夸大地说,地球上人类迄今为止利用的主要能量,直接或间接地都来自太阳。而在人类有史可查的漫长岁月中,太阳光和热都未见有丝毫的减弱,这既让人高兴,又令人费解:如此巨大而持久的能量是从哪里来的呢?

对此,古往今来的科学家们众说纷纭。首先有“燃烧说”,这是一种最原始也是最朴素的猜测。该观点认为,太阳是通过燃烧内部物质而发出光和热的。有人设想太阳是一只巨大无比的“煤炉”,靠类似煤炭燃烧发出强光和辐射热量。然而,根据测量,太阳表面温度高达6000摄氏度,很难解释由碳和氧发生化学反应生成二氧化碳的“燃烧”,能达到这样高的温度。同时,根据测到的数据,太阳每秒的辐射能量以功率单位瓦计算为3.9×1026,用普通的燃烧难于维持这个大得惊人的天文数字。再者,如果太阳是靠这种化学能来维持的话,最多不过燃烧几千年,可是至今太阳已经存在了45亿年而不见衰退的迹象。由此可见,“燃烧说”不符合事实。

于是出现“流星说”。有人认为太阳周围有稠密的流星,它们以可观的宇宙速度撞击太阳,这样流星的动能便转变为太阳的热能。然而,果真如此的话,欲维持太阳发出那样巨大的能量,坠落在太阳表面上的流星之多,应该使太阳的质量在近2千年内有显著的增加,这就会影响九大行星的运动;但是从九大行星的运动情况来看,并没有什么显著的变化。况且按照牛顿的万有引力理论,流星不会漂浮在太阳的上空,不会大量落在太阳上,它们是以闭合的轨道绕太阳运行。

关于太阳能的来源,第一个可称得上“理论”的,是天文学家亥姆霍兹于1854年提出的太阳“收缩说”。他认为像太阳那样发出辐射的气团必定会因冷却而收缩。当气团分子在收缩中向太阳中心坠落时,势能转变成动能,再转变为热能以维持太阳所发出的热量。但是计算同样表明,如此太阳的寿命不应超过5千万年,而太阳的实际年龄却是45亿岁。面对事实,连亥姆霍兹自己也对“收缩说”摇头了。

然后是“核燃烧说”。根据光谱分析,早已知道太阳中含有丰富的氢,还有少量的氦。可见,这两种元素一定与太阳能有密切的关系。1911年原子核发现后,人们开始猜测太阳能也是从原子核反应中释放出来的。

已知几个核子(组成原子核的粒子)通过核反应结合在一起,就会放出能量。例如4个氢通过核反应结合成1个氦,便能放出20兆电子伏特以上的能量。按照著名的爱因斯坦质能关系式“E(能量)=m(质量)×C2(光速)”,4个氢核质量约相当于4000兆电子伏特的能量,核燃烧后的“质量亏损率”为Am/m=20/4000=5×10-3。而从太阳的辐射功率,同样可由质能关系估计出太阳每秒减少的质量为4×106吨,这与太阳总质量2×1027吨之比为2×10-21,这就是太阳的“质量亏损率”。两者一比较,便得出太阳寿命估计为几百亿年。于是人们恍然大悟,原来氢就是太阳中的燃料,氦则是它燃烧后的余烬,太阳能来自氢的聚变反应。从太阳光的光谱分析,也证实太阳里确实存在氢气和氦气。

人类对太阳能来源的认识在步步深化,然而,疑团却远未解开。氢弹爆炸是瞬息之间发生的,反应是在顷刻之间完成的,人们至今无法控制聚变反应,使之像裂变反应那样持续进行。要是太阳在进行“氢弹爆炸”,为什么不是所有的氢气一起参加反应?要是所有的氢一起参加反应,反应一次完成,反应之后理应逐渐冷却,但是,研究证明,数百万年来,太阳光的强度没有丝毫减弱。如果太阳是在进行大规模的有控制的热核反应,那么什么条件使得太阳中的氢能局部地持续地参与聚变反应?有控热核反应正是人们追求的目标,但是至今没有做到。由此看来,太阳能的来源问题,仍是科学家们努力探索的一个谜题。

月球上的“金字塔”是怎么回事

月球是地球黑夜时的光明使者,那皎洁如玉的月光,笼罩着诗一般的气氛。自古以来,它激发了人们多少美丽的想象。嫦娥奔月、吴刚伐树、玉兔捣药,虽说“高处不胜寒”,却也“别有天地开”。然而,当代科学对于月球环境的了解,则会令古人大失所望的:这里是一个极端死寂和干燥的荒凉世界,布满了大大小小的坑穴(环形山);月球表面有日照的地方可达127℃,夜晚则降到-183℃。近年,有关宇宙探测器对于月球秘密的意外发现,使科学家们产生了种种怀疑和推测。

1969年7月至1972年12月,在美国执行“阿波罗”登月计划的过程中,宇航员拍下了一些月面环形山的照片,从这些照片上看,环形山上分明留有人工改造过的痕迹。

例如,在戈克莱纽斯环形山的内部,可以看出有一个直角,每个边长为25千米;在地面及环壁上,还有明显的整修痕迹。更为独特的是有一座环形山,它的边线平滑,过于完整;环内呈几何图形,有仿佛是划出来的平分线,在圆周的几何中心部位,有墙壁及其投影。该山外侧有一倾斜的坡面,其形状有如完整的正方形,在正方形内有一个十字,把正方形等分成对称的各部分。

其实,有关月球的多种令人不解现象,在近200年间人类对月球的观测过程中,已被陆续发现。

1821年底,约翰·赫谢尔爵士发现月球上有来历不明的光点。他说,这光点是同月球一起运动着,因而它绝不可能是什么星星。

1869年8月7日,美国伊利诺斯州的斯威夫特教授与欧洲的两位学者希纳斯和森特海叶尔,观察到有一些物体穿越了月球,发现“它们仿佛是以平行直线的队形前进的”。

1867年被天文学界宣布消失的静海的林奈环形山,在原消失地竟出现了一个白色的直径达7千米的奇异光环。有的学者提出,这种情形可能意味着有什么透明物质覆盖了某种基地。

1874年4月24日,布拉格的斯切·里克教授,观察到一个闪着白光的不明物体缓缓地穿过了月球,并从那里飞出。

1877年11月23日夜晚,英国的克来因博士和在美国的一批天文学家,惊愕地看到一些光点从其他环形山集中到柏拉图环形山中,这些光点穿越了柏拉图环形山的外壁,在山的内部会齐,并且排列成一个巨大的发光三角形,看来很像某种信号的图案。

1910年11月26日发生日蚀时,法国和英国的科学家分别观测到“有一个发光的物体从月球出发”,“月亮上有一个光斑”。据当年观测者的描述,日蚀过程中月亮上出现的物体形似现代的火箭。

1953年12月21日,英国天文协会月球部主任威尔金斯博士在广播谈话中透露:在月面的危海地区观察到了大量的“圆屋顶”;这些半圆形的“建筑物”呈耀眼的白色,它们中最小的直径也有3千米。

莫杰维耶夫博士说:“我们完全不明白这是怎么回事,而我们也相信美国方面也和我们一样,无法解释这件事。”

惟一的推测,就是活动在地球之外的超级智能力量在月球上的出现与隐没。更多的线索,可能是为地球上的人们所想象不到的。

围绕地球的卫星——月球所出现的一系列无法解释的现象,科学界中的有识之士已警觉到:地外智能力量正在“使用”我们的月球。

月球上为什么会有神奇辉光

总的说来,美丽的月球是千古不毛之地,多少年来死气沉沉的表面依然故我,几乎没有什么变化。一位英国天文学家曾诙谐地打趣:“如果我们带着望远镜回到恐龙时代,便会发现,那时的月球与今天所见的完全一样。”但实际上,月球并没有彻底死寂,它还是有许多神秘的局部活动现象(称月面暂时现象)——月面上会出现某种奇异的辉光,散发出一些神秘的云雾,局部地区暂时的变暗、变色,甚至有些环形山突然消失或莫名其妙地变大……

最早发现这种月面暂时现象的可以追溯到八百多年前。1178年6月25日是个蛾眉月之夜,英国同时有5个人在不同的地方发现,在弯弯的月钩尖角上有一种奇异的闪光。但当时这些目击者的报告并未引起人们的重视。1783年,天王星发现者威廉·赫歇耳在用口径22厘米的望远镜观测月球时,发现了“月球的阴暗部分,有一处地方在发光。其大小和一颗四等红色暗星相仿”。1787年他又观测到了这种现象,并形容它为:“好像是燃烧着的木炭,还薄薄地蒙上了一层热灰。”经赫歇耳两次报告后,送到天文台的这种观测报告日渐增多,至今大约已有一千五百多起。

1866年10年16日,曾给出3万多环形山的德国天文学家约翰·施密特宣称,原来在澄海中的一个他十分熟悉的林奈环形山(直径9.6千米),忽然不翼而飞。1868年,有人发现一个原来只有500米大的小环形山直径已增大到了3千米。

在20世纪,这种观测报告有增无减。英国天文学家穆尔在1949年也连续见到两次月面上发出的辉光。1958年11月3日和4日,前苏联普耳科沃夫天文台的科兹洛夫在用口径76厘米的大望远镜观测时,见到了阿尔芬斯环形山的中央峰上有粉红色的喷发,持续了大约半小时之久。他拍得了这次喷发的光谱照片。这是月面暂时现象的第一个科学依据,接着,1963年,洛韦耳天文台也在月面同一地区发现了红色的亮斑……

进入空间探测时代后,登月的宇航员也有类似的发现。第一个踏上月面的阿姆斯特朗在1969年7月20日即登月前夕,曾向地面指挥中心报告:“我正从北面俯视着阿里斯塔克(环形山),那儿有个地方显然比周围区域明亮得多,仿佛正在发出一种淡淡的荧光。”而同一时刻,有两名德国天文爱好者也向柏林天文台报告,他们见到阿里斯塔环形山的西北部在发光。1992年我国广西也有两名天文爱好者用小型望远镜发现了危海边缘有“二氧化氮似的颜色”(发红)达十多分钟之久。

据统计,月面暂时现象多数集中在阿里斯塔克及阿尔芬斯两个环形山区域,大约每处有三四百起。其次是在月面洼地的边缘地区。这些辉光亮暗不一,寿命也有长有短(平均为20分钟左右),涉及的范围大约有几十千米。

对于月面暂时现象的存在,现在几乎已经没有争议了,但造成的原因却至今不明。人们曾提出过各种假设。有人认为月面上还存在着少量的活火山,是它们的活动造成了这一切;有人认为是太阳风与月球作用造成的荧光;还有人则猜测是某种摩擦放电形成的电火花;还有天文学家提出,这是地球对月球的潮汐作用引起的,因为地球对月球的引力要比月球对地球的引力大80多倍;当然也有人把它与“月球人”扯在一起……

其实,月面的各种具体现象,可能是由不同的原因引起的,不能“眉毛胡子一把抓”。例如环形山的变化可能是陨星的轰击。“阿波罗14号”宇航员在登月时,曾在月球上安置了许多种科学仪器。它们曾真实记录了一次月面暂时现象:1972年5月13日,一颗大陨星轰然落在仪器附近不远的月面上,它与月面的猛烈撞击,使月岩四处飞溅。由于月面重力较小,飞溅过程持续了将近一分钟。事件后,陨星陨落处出现了一个直径几十米的坑洞,大小可与足球场相比,当时四个月震仪都记下了月震曲线。据算,其能量相当于爆炸1000吨TNT炸药。可以设想,如果陨星较大,是可以造成或毁灭一个较大的环形山的。而有些辉光则是地球对月球的潮汐力造成的,它使月面上某些区域的引力陡增,使月壳内部的气体逸散出来,扬起细细的月尘,在阳光的映射下,就会使我们见到那些神奇的辉光。

为什么月亮会发生圆缺变化

我们看到的月亮,它的形状在一个月里天天发生变化,有时像个圆盘,有时会缺了一半,有时又像一把弯弯的镰刀。

月亮为什么会发生圆缺变化呢?

我们知道,月亮是围绕地球运行的一颗卫星,它既不发热,也不发光。在黑暗的宇宙空间里,月亮是靠反射太阳光,我们才能看到它。

月亮在绕地球运动的过程中,它和太阳、地球的相对位置不断发生变化。当它转到地球和太阳中间的时候,月亮正对着地球的那一面,一点也照不到太阳光,这时,我们就看不见它,这就是新月,叫做朔。

月球的圆缺变化示意图新月以后两三天,月亮沿着轨道慢慢地转过一个角度,它向着地球一面的边缘部分,逐渐被太阳光照亮,于是我们在天空中就看到一钩弯弯的月牙了。

这以后,月亮继续绕着地球旋转,它向着地球的这一面,照到太阳光部分一天比一天地多,于是,弯弯的月牙也就一天比一天“胖”了起来。等到第七八天,月亮向着地球的这一面,有一半照到了太阳光,于是我们在晚上就看到半个月亮,这就是上弦月。

上弦月以后,月亮逐渐转到和太阳相对的一面去,这时它向着地球的这一面,越来越多地照到了太阳光,因此我们看到的月亮,也就一天比一天圆起来。等到月亮完全走到和太阳相对的一面时,也就是月亮向着地球的这一面全部照到太阳光的时候,我们就看到一个滚圆的月亮,这就是满月,叫做望。

满月以后,月亮向着地球的这一面,又有一部分慢慢地照不到太阳光了,于是我们看到月亮又开始渐渐地变“瘦”。满月以后七八天,在天空中又只能看到半个月亮了,这就是下弦月。

下弦月以后,月亮继续“瘦”下去。过了四五天,又只剩下弯弯的一钩了。之后,月亮慢慢地变得完全看不见,新月时期又开始了。

月亮圆缺的变化,是由于月亮绕着地球运动,它本身又不发光而反射太阳光的结果。

为什么月亮老是以同一面朝着地球

从地球上看月亮,只能看到它的一面,它的另一面像是怕羞似的,老是“藏”着不让我们看到。随着天文观测手段的进步,人们对月亮向着地球的一面,已经了解得比较清楚了,但是对它“藏”起来的一面,却所知甚少。

现在,人们利用载人或不载人的航天器,绕到月亮背面上空,给月亮背面拍了照片,再用无线电波传送回来或直接带回地面,这才知道它是什么样子。与正面相比,月球背面的地形更加凹凸不平,起伏悬殊。平原所占面积较少,而环形山则较多。

月亮为什么永远以同一面朝着地球,而另一面从来不转过来呢?

这是因为月亮一方面绕地球公转,一方面在自转,而它自转一周的时间,正好和它绕地球公转一周的时间相同,都是27.3天。所以,当月亮绕地球转过一个角度,它也正好自己旋转了相同的角度,如果月亮绕地球转了360°,它也正好自转了一圈,永远是一面朝着地球,另一面背着地球。

因为月球沿着椭圆形轨道绕地球运动,公转速度不像自转速度那么均匀,它的自转轴又不垂直于公转运动轨道面,因此我们有时能够看见月亮背面的一小部分。这样算起来,我们可以看到的月亮部分,大约是月球表面的59%。

至于说到月球自转周期等于公转周期,那倒并不一直是这样的。在几十亿年前,月球的自转要比现在快得多,由于地球强大的吸引力,使月球自转逐步减慢,直到今天正好等于它的公转周期。

将来,月球还会逐渐远离地球,它绕地球的公转周期会变长,而地球的自转周期也会变长。大约再过50亿年,地球上的一天会等于月球绕地球一周的时间,也就是一天等于一个“月”,相当于现在的43天。那时,地球会以同一面对着月球,而不是月球以同一面对着地球了。住在地球背着月球一面的人们,就要长途旅行到对着月球的一面来,才能观赏到皎洁的明月了。

绕着太阳公转。当月亮转了一周之后,地球也在绕太阳转的轨道上走了一段距离,因此经过27.3天后,月球原来正对太阳的那一点现在并没有正对太阳,还要再转过一个角度,才能正对太阳,这段时间要2.25天,把27.3天加上2.25天,不是差不多等于29.5天吗?

“月到中秋分外明”的说法对吗

我国把农历八月十五称做中秋节,已经有2000多年了。在中秋节吃月饼的风俗,至少也有1000年了。许多人认为,中秋节晚上的月亮比一年中其他时候的月亮要亮些。古人所写的诗词文章里也这样说。但是从现代天文学的角度来看,中秋节的月亮比一年里其他时候的望月更亮的看法是不正确的。

月亮在一个椭圆轨道上绕地球转动,因此,月亮与地球的距离有时远些,有时近些,在40.67万~35.64万千米之间变化着。中秋节时,月亮常常不是在离地球最近处,也就不会比其他月份的望月亮了。

从这个月的满月到下一次满月,平均要经过29天12小时44分钟,这叫做一个“朔望月”。规定“朔”一定在农历每月初一,“朔”以后平均经过14天18小时22分钟才是“望”。所以只有当“朔”发生在初一清晨,“望”才会发生在十五晚上。而较常发生的是,望月不在十五晚上,而是在十六晚上。朔望月的长短可以比平均值多或少6小时,因此有时“望”甚至延迟到十七日清晨才发生。实际上,中秋节晚上的月亮常常没有下一天十六晚上的月亮圆和亮。

为什么人们觉得中秋节晚上的月亮分外明呢?这完全是主观感觉和多年来流传下来的风俗习惯造成的。春天天气还较冷,人们不常在室外观赏星星与月亮;夏天月亮较低,月光较少,而天空的星星又特别多,夜晚在户外乘凉时,主要观看银河和牛郎、织女星,以及在南方天空中天蝎座里那颗火红的“心宿二”;冬天虽然月光多,但天气寒冷,谁还愿意出外观赏星月呢?秋天不冷不热,秋高气爽,月亮就成为观赏的主要对象,怪不得人们总认为“月到中秋分外明”了。

神秘的月球魔力

在中国古传统文化中,称日月为太阳太阴。是说太阳和月亮作为一阳一阴,对地球上的生物、人类是有影响的。实际上,人体生物钟的存在,海洋潮汐现象的存在,某些动物昼夜不同生活习性的形成,这些都与日月的影响有关,这已成为不争的事实。究其根源,这都是因为与日月的万有引力、磁场、宇宙线及光线(包括直射光和反射光)有很大关系。因为人和生物虽生活在地球表面上,但他们却时时刻刻生活在由日、月形成的地月系统和宇宙场内。月球虽小,但它与地球距离比其他行星、恒星离地球的距离都近得多(只有38万千米)。因此,影响力就显得显著得多。

月亮的圆缺影响蔬菜生长和人的生理。20世纪70年代,美国伊利诺大学根据实验的数据,公布了一个有趣的结果:蔬菜的生长,同月亮的圆缺有关。月圆时,马铃薯块茎淀粉的积聚速度最快,他们认为,这也许同磁场的变化有关。

据美国医学协会一份报告说,月亮的圆缺可能会使人生病。在满月和弦月这一段时间,88个病人中有64%的病人遭受心绞痛的袭击。在地球、太阳和月亮运行到一条直线之前,38个患溃疡病的人,肠胃出血要多些。

为什么会产生这种现象呢?一些科学家认为,这可以从万有引力和电磁的变动中得出部分答案。地球和月亮相互作用,可能影响人类一些生理上和心理上的行为变动。

满月之夜多杀人事件。用统计学方法对暴力行为进行数量化研究,里瓦选择杀人事件作为研究题目。根据美国迈阿密市15年发生的杀人事件数量和发生时间所作的统计发现,杀人事件在满月与新月之时明显地出现高峰,不仅杀人事件,其他暴力事件也是如此。据警察和消防人员提供的资料,满月时纽约市的放火事件比平时增加一倍。其他城市也是如此。放火和伤害事件在满月之夜特别多。据统计,东京消防厅的交通事件急救车出动次数在满月之夜也呈高峰状态。这完全证明里瓦的理论。不仅如此,里瓦的研究还验证月龄(表示月亮盈亏的日数)从各方面对人类有影响,同时结合其他学者对月球力影响的研究,里瓦认为人之所以受到这种影响是因为生物体与宇宙产生共鸣,有生物钟存在。正像潮水有涨有落一样,月球的引力和磁场的周期性变化也会给人类带来周期性的变动,当然它要在人的行动中表现出来。里瓦认为月球的这种力对能保持自身平衡的人影响不大,但是对于那些敏感于月球力的人来说,他们就会因此而成为一个情绪极不稳定和不能抑制冲动的人,于是诱发各类案例。

满月和新月前后分娩多。《月的魔力》一书的译者,日本茶水女子大学的藤原正彦副教授受到里瓦的启发也对“月球的力”进行研究。她的研究课题是“月球的力”与分娩的关系。她靠朋友的帮助从东京和岐阜的两个普通妇产医院得到了2531个婴儿的正确分娩时间。因为考虑到大医院里使用催产素和剖腹产的较多,所以没有从大医院取数据,而是从这两个普通的妇产医院取数据。将取到的数据绘成图观察,可以看到满月和新月前后产妇分娩出现高峰,而且在满月和新月两个不同的时间里,绘出的图的形状极其相似,具有一定规律性。

假定影响分娩的是月球和太阳的力(吸引力和离心力),那么将这种力作成图,图中曲线的形状也与上图相似。在藤原正彦的论文中还有许多数学研究和数学公式,研究表明就是这种力产生的“扳机”效果引发阵痛而进行分娩。藤原正彦副教授说:“一般认为用分娩图来说明月球的圆缺对分娩的影响是相当确切的,所以‘扳机’效果数据理论与实际的图相吻合,这一点很有意义的。”

随着今后更多的研究,也许还会发现更多惊人的事实。

月球背面的奥秘

月亮的旋转运动,在地球引力影响下,自转和公转周期是一致的。因此,月亮永远只以半个球面对着地球。

月亮的公转轨道面和地球公转轨道面有个夹角,这就使月亮自转轴的南端和北端,每月轮流地朝向地球,在地球上,有时能看到月亮的南极和北极以外的部分。实际上,地球上看到的月亮表面不只是半个球面,而是月亮表面的59%。

还有其余的41%的月面(月亮的背面)呢?由于它始终背着地球,人们没法瞧见,千百年来,它一直是个猜不透的谜。

有人说,月亮的背面,重力可能要比正面大一些,也许有空气和水的存在。有人预言说,可以断定那里有一片环形山,既广阔,又明亮。也有人说,地球北半球大陆多,南半球海洋多。月亮上可能也是这样;月亮正面的中央部分是高地,月亮背面的中央部分是一片“大海”——呈暗色的平原。

1959年1月2日,前苏联发射的“月球1号”,于1月4日飞抵距月亮6000千米的上空,拍摄一些照片传到了地球。

1959年10月4日,前苏联又发射了“月球3号”自动行星际站。它于10月6日开始进入绕月球的轨道飞行,7日6时30分,它已转到月亮背面大约七千米的高空。当时地球上看到的是“新月”。月球背面正是受太阳照射的白天,是照相的大好时机。当行星际站运行于月亮和太阳之间的时候,在40分钟内拍摄了许多不同比例的月球背面图,然后进行显影、定影等的自动处理,而通过电视传真把资料发回地球。这是有史以来拍摄到的第一批月亮背面的照片。从此,这个千年奥秘终于被揭开了。

月亮的背面也是像正面一样的半球,绝大部分是山区,中央部分没有“海”,其他地方虽有一些海,但是都比较小。背面的颜色比正面稍稍红些。现在,科学家已经绘制成一幅较详细的背面图,并且给那些背面的山和“海”,1972年,美国“阿波罗”17号宇宙飞船在返回地球途中拍摄的月球照片。按国际规定来命名。

环形山以已故著名科学家名字命名的有:齐奥科夫斯基、布鲁诺、居里夫人、爱迪生等。“海”有理想海和莫斯科海等。有五座环形山用中国古代石申、张衡、祖冲之、郭守敬和万户五位科学家的名字命名。其中规模最大的是万户环形山,面积约六万平方千米,它位于南半球,夹在赫茨普龙与帕那(都是英国物理学家)两座环形山之间。

神秘的引人注目的环形山是怎样形成的呢?

1966年,美国“月球轨道环行器2号”拍摄的照片,使人们能够仔细地看清月面上那些大量错落、形状不一的圆丘,同美国西北部的圆丘相似。科学家认为,它们是由月亮内部熔岩向月面鼓涌形成的。

现代科学仪器观测的结果和宇航员带回的月亮岩石所作的分析,使科学家得出这样的假设:火山活动和陨星撞击这两种自然力量在月貌的形成中都有作用。许多圆丘和较小的环形山是火山活动中形成的,而那些大环形山是陨星撞击月亮时造成的。

什么是流星

几乎所有的人都见过流星。在晴朗的夜空中,突然一道亮光划破黑暗,产生一条明亮的轨迹,转眼就消失了,只是给仰望星空的人徒增几多诗意和伤感。

一般情况下,每个晴朗的夜晚,一个观测者肉眼能看到的流星平均每小时大约有10颗左右,它们的出现没有规律,被称为偶发流星。还有一类成群出现的流星——流星群,一般出现在大致固定的日期、相同的天区范围,有十分明显的周期性,被称为周期流星或流星群。

历史上曾记载着一次壮观的流星雨,就是1833年11月出现在狮子座的流星雨,每小时下流的数量高达35000颗之多,一夜的流星大约在24万以上。

流星原本是运行在星际空间的尘埃似的小天体—流星体。当它们闯入地球大气时,与大气中的分子发生剧烈的碰撞和摩擦,在流星体周围便形成了由炽热气体和冲击波组成的包层,明亮可见。

流星体质量一般都很小,所以绝大多数流星都在大气层中全部燃烧尽了。

当流星体的质量很大时,即使与空气摩擦产生的几千摄氏度的高温也不会使其全部烧毁,剩余部分便会落到地面上,称为陨星。

落到地面上的陨星很多,但因大部分落入海洋或荒无人烟地区,所以不被人所知。

光辉灿烂20世纪70年代末,科学家在南极地区找到了大量陨石,短短几十年中,数量多达3000多快。最大的是落于纳米比亚的戈巴大陨铁,重量在60吨左右。

由于一些陨星是早期太阳系形成时的产物,它们对科学家了解太阳系的形成有很大的帮助。某些陨星来自月球或其他行星,有些则是小行星的碎片。它们原本是这些天体的一部分,但因与其他天体发生碰撞而碎裂,从而溅落到宇宙空间。

最近20多年来,对陨星的研究工作取得了新进展,发现陨星中存在水分及种类繁多的有机物。

科学家们对掉在澳大利亚的一块陨石进行了分析,结果在其中发现了16种氨基酸:其中5种属于构成地球生命的20种氨基酸之列;另外11种属于不进入地球的蛋白质成分中的氨基酸。

更令人感兴趣的是,已经清楚地证明了在陨石中找到的这些氨基酸确实是在太空中合成的,而不是陨石进入地球大气层后被地球物质“污染”的。

于是,有一个结论便确凿无疑了:这些陨石是从有过生命的行星上抛出来而飞临地球的。这便是宇宙中又一个关于生命的现象。

为什么会下陨星雨

夜晚,常常能见到天空中流星一闪而过,产生这种现象的流星体绝大多数都只有针尖般大小。天外来客流星体与大气撞击、摩擦、燃烧发光的同时,已成为灰烬。如果流星体比较大,没有燃烧完,其残余部分坠落到地面附近时,又发生崩裂,大大小小的石块之类的东西就落到地面上,成为陨星。一次坠落的陨星比较多的话,就被称作陨星雨。

1976年3月8日,一场世界罕见的陨星雨降落在我国吉林省境内。

那天下午3时许,一颗有好几吨重的陨星,在飞速坠入吉林市地区上空时,由于与稠密陨石石迹的大气层相撞而燃烧、发光,形成一个耀眼夺目的大火球。火球很快分成一大两小,由东向西鱼贯前进,并发出巨雷般的爆裂声和隆隆回响,雷声未停,大小陨星纷纷落地,像雨点般陨落在吉林市北郊和永吉县、蛟河县一带,成为举世罕见的吉林陨星雨。

吉林陨星雨是世界上分布最广、数量最多、质量最大的一次极其罕见的陨星雨。

“雨”区在东西方向上延伸达70千米,南北宽8千米多,面积达500平方千米。

从事此项研究的工作人员在短短几天内,就收集到了100多块质量超过500克的陨星,至于较小的陨星碎块和碎屑,简直是无法计数。

这次坠落的陨星总质量在2600千克以上。其中,最大的“一号陨星”,是有史以来世界上收集到的最大的石陨星,它有1770千克。这块陨石降落在永吉县桦皮厂乡范围内。

地球上为什么能诞生生命

回答这个问题太重要了,因为这就好像当我们呼吸的时候,想知道我们为什么能呼吸一样。作为生命的一种存在形式,我们人类从亘古以来就一直在努力,试图搞清楚我们自身的来龙去脉。

在古代,人们认为地球上的生命是由神创造的,他们认为地球上的一切生物都是由神在创造地球时一次完成的。

随着人类思维中理性成分的逐渐增长,人们开始从科学的角度来探索生命的起源。

人们发现,一块肉放臭以后,会生出蛆虫;青蛙似乎从河泥中长出来;腐烂的水果生出果蝇等。于是便认为无生命的物质里会诞生出生命。不过,物理学家们通过实验推翻了这一观点,而且证明所有的生命都是由先前的生命“生出”的。于是这便引申出一个问题:最早的生命是怎样来的呢?

人们又通过一系列实验,加上一些地质考古资料,知道在亿万年的漫长时间内,原始地球的海洋中产生了许多有机分子。这些有机分子再经过复杂的化学反应,最终形成了原始的生命。原始生命经过由低到高的进化,终于使地球进入了智慧生命这一阶段。

地球上之所以会产生智慧生命,是因为它具有以下一些有利条件。

首先它是一颗老行星。生命从简单形态进化为智慧生命须经过相当长的时间。因为这一过程所要经过的突变和自然选择,是由一些很偶然的过程组成的。

另外,地球表面有适宜的温度。我们知道,生命活动主要是互相协调的许多复杂的化学过程的总和。如果没有有机化合物,就不能产生生命。而这些有机化合物的形成,以及生命体的生命活动都要求有合适的温度条件。

还有,地球有较为浓密的大气。这是因为地球的质量不太大,也不太小,如果质量太大,其引力将保留住不利于生命产生的原始大气;如果质量太小,大气中的分子和原子会很快散失。

更为重要的是,地球上有非常丰富的液态水,71%的地球表面为水所覆盖。地球是行星中惟一一颗能在表面存在液态水的行星。

我们知道,液态水是生命存在的重要条件。海洋的热容量也是保持地球气温相对稳定的重要条件。液态水也造成了地表侵蚀及大洲气候的多样化,目前这是在太阳系中独一无二的过程。

宇宙中别的星星上有人吗

银河系有1000亿颗以上的恒星,它们全是炽热的气体球,表面温度达2000~30000℃,甚至更高。在这种环境下,显然不可能有任何生命存在,当然更谈不上人了。

宇宙间,只有在那些不发光、有固体表面的行星上,人才有可能生存。这样,问题就变成了首先要解决除太阳之外,其他恒星也有自己的行星系吗?什么样的行星系才可能有人居住?

近代天文学告诉我们,太阳系不是银河系内惟一的行星系。例如,在太阳附近,半径为17光年的空间内,共有60颗恒星,在它们中间,带有行星系的估计不会少于10颗。

凡是行星系都能有人存在吗?不。先决条件是,作为行星系中心的天体是个什么样的恒星。如果中央星是个时而宁静、时而爆发的变星就不行,它一发“脾气”,不仅行星上的人受不了,就是行星本身也难保不烧化。要是中央星是周期膨胀和收缩的变星也不行,忽冷忽热的“太阳”,行星上的生命是难以适应的。表面温度高达1万摄氏度以上的热星也不行,它的紫外线辐射太厉害,一切生命都无法生存。中央天体如果是相距很近的双星,那更不行,天上有两个“太阳”虽然壮观,要是有行星系的话,行星的公转轨道不是圆形的,而是一条十分复杂的曲线。行星时而接近两个太阳,烤得表面都熔化了;时而又跑到遥远的天边,成了酷冷的世界。温度变化范围那么大,怎么能住人呢?看来,只有类似太阳那样“稳定”的恒星,才具有得天独厚的条件,被它的行星所欢迎。天文学家把这种恒星叫做太阳型恒星。

尽管条件这样苛刻,限制这样严格,但在银河系中,具有合乎住人条件的行星系的太阳型恒星,还是可能有百万个之多,其中有些应该存在文明世界。1960年,国外有一项名叫“奥兹玛”(OZMA)的科研计划,研究人员用口径26米的射电望远镜,瞄准了两颗很有可能带有行星的太阳型恒星,它们都是我们的近邻,一颗是“波江座ε”,距离我们10.8光年;另一颗是“鲸鱼座τ”,在11.8光年处。天文学家共监测了400小时,试图接收到那里可能有的外星人向我们发出的讯号,这是人类试图搜寻地球以外生命的创举。30多年来,已实施了多个类似的科研项目。

太阳系的其他行星上有没有生命

在太阳系里,除地球以外,别的天体上有没有生命呢?这是长期以来人们一直关注的问题。

我们知道,生命的起源、生存和发展都要有一定的条件和适当的环境。那么,让我们去太阳系各大行星进行一次星际旅行,考察那里的环境是否具备生命存在的条件。

首先,让我们来看看离太阳最近的水星上的环境如何。水星大气极其稀疏,它的主要成分是氦。水星的表面温差极大,太阳直射时达427℃,这样的温度足以使铅熔化;而在夜晚,温度又降至-173℃。虽然名为水星,它的表面却没有一滴水。这样的条件显然不适合生命存在。

人们对金星很感兴趣,至今已有20多艘飞船飞临金星考察,发现金星有浓密的大气,主要是二氧化碳,表面温度高达480℃左右,就像一个高温高压的蒸笼。这里没有生命存在的痕迹。

火星是地球的近邻。它一直是人们认为最有可能存在生命的星球,然而遗憾的是,多次探测尚未发现火星上有生命存在的迹象。

接下来,我们再去拜访木星、土星、天王星、海王星这四个太阳系中的巨人。它们没有岩石结构的表面,而是由液态的氢、氦等组成,它们都有浓厚的大气层及固态的核,温度范围在-220~140℃之间。这里没有发现也不可能诞生生命。

冥王星是目前已知的太阳系最外围的行星,人们对它知之甚少。它的表面平均温度约为-220℃。冥王星上也不可能有生命存在。

既然对这些大行星的考察一无所获,那么,行星的卫星上会不会有生命呢?我们把目光放在土卫六上。飞船掠过土卫六近距拍摄的照片显示,该卫星呈橘黄色,像熟透了的柿子。为什么对它特别感兴趣呢?因为它不仅是仅次于木卫三的大卫星,直径达5150千米,而且更引人瞩目的是,它是太阳系中惟一有浓厚大气的卫星,它的大气比地球大气还要浓。大气的主要成分是氮,还有微量的碳氢化合物、氧化物、氮化物等,还可能有氢氰酸分子等有机分子。但是否有生命存在还需进一步探索。

另外,太阳系中的一些小天体,由于体积较小,不适合生命存在。如此看来,太阳系中只有地球上充满了勃勃生机。

牛郎星同织女星真的能每年相会吗

夏天傍晚,正对我们头顶方向附近的一颗亮星,就是织女星。隔着银河,在天空的东南牛郎星方,与织女星遥遥相望的一颗亮星,就是牛郎星。牛郎星两旁,还有两颗小星。

织女星看上去,牛郎星和织女星只隔一条银河,在天空相距不远。实际上,它们之间的距离是非常遥远的,约为16.4光年。神话中传说牛郎织女每年七夕(农历七月初七)晚上过河相会,就算牛郎腿快,每天走100千米,从牛郎星走到织女星那里,需要经过43亿年时间;即使改乘宇宙飞船,每秒飞行11千米,到达织女星要45万年;在电话中互相打一声招呼,得到对方回音至少需要32.8年。牛郎、织女两星每年相会一次是完全不可能的。

牛郎星和织女星距离我们地球都很遥远。牛郎星距离我们16光年,也就是说,我们现在看到的牛郎星,是它16年前发出的光。织女星距离地球更远了,约26.3光年。正因为它们离我们这样遥远,看起来才成为两颗小小的光点。其实,牛郎星和织女星都是比太阳还要巨大的星球。牛郎星的体积比太阳大2倍,表面温度比太阳高2000℃,发出的光比太阳强10倍;织女星比牛郎星更大,体积比太阳大21倍,发出的光比太阳强60倍。织女星的表面温度接近1万摄氏度,比太阳的温度还要高3000℃以上。这个温度甚至比电火花的温度还要高几倍,难怪我们看到织女星的光芒白得有点微微发青了。

极光是怎么回事

极光是一种奇特的天文景观,只出现在两极地区的上空。它们或动或静,或飞或舞,宛如七彩长虹在空中辉映。

挪威的极光学家索弗斯曾用这样的言辞来赞美极光的辉煌瑰丽:“人世间没有任何色彩和画笔能描绘它那难以想像的瑰丽,也没有任何文字能描写出它那无与伦比的秀美。”

那么,极光到底是怎么回事呢?它是宇宙线粒子沿磁力线向两极跑的明证。

我们知道,地球是一块天然大磁铁,磁场在它的周围构成了一个看不见、摸不着的巨大的磁层。我们所熟知的指南针指南或指北的特性,就是磁层在暗地里“拨弄”的。

磁层是个“保护神”,在地球外围筑成一道天然的屏障,使能伤害人类和其他生命的宇宙线不能到达地面行凶。

宇航员都知道,到太空去要闯过好几道难关,其中一道就是宇宙线的侵袭。

极光由于磁层的存在,宇宙线中的带电粒子到达地球附近后,沿着磁力线一面绕圈子,一面向地球两极跑。到了地球的南北极上空后向地面沉降,宇宙线强时,在极区上空向地面沉降的粒子就多。

向地面沉降的高速带电粒子与地球大气相互作用,就产生了五彩缤纷的极光。

彗星的“故乡”在哪里

天文学家每年都能在天空中发现若干彗星,它们都是从哪里来的呢?

关于彗星起源的问题,可以说是众说纷纭,到现在还没有一个比较一致的意见。

有一种意见认为,太阳系天体上的火山爆发把大量物质抛向空间,彗星就是由这些物质形成的。这类观点可以叫做“喷发说”。而另一种称为“碰撞说”的观点则认为,在很遥远的年代,太阳系里的某两个天体互相碰撞,由此产生的大量碎块物质,形成了现在太阳系中的彗星。这些假说都存在着一些难以解释的问题,很难得到大多数天文学家的承认。

关于彗星起源的假说当中,被介绍得比较多而且得到相当一部分科学家赞赏的,那就是所谓的“原云假说”。在对大量彗星轨道作统计研究的基础上,原云假说认为:长周期彗星椭圆轨道的远日点很多都是在3万~10万天文单位之间,由此得出结论,在离太阳约15万天文单位的太阳系边缘地区,存在着一个被称为“原云”的物质集团,它像一个巨大的包层那样,彗星就是由其中的物质形成的。原云往往被称为“彗星云”,又因为这个假说最早是在20世纪50年代由荷兰天文学家奥尔特提出来的,又被称为“奥尔特云”。奥尔特云就像是彗星的主要“故乡”。

据奥尔特估计,彗星云这个包层中可能存在多达1000亿颗彗星。这真是一个庞大无比的彗星“仓库”啊!其中的每一颗彗星绕太阳一周都得上百万年。它们主要是在附近恒星引力的影响下,一部分彗星改变轨道并进入太阳系内层。其中又有一些彗星受到木星等大行星引力的影响而变为周期彗星。另外的一些彗星可能被抛出太阳系外。

地球人怎样与宇宙人对话

人与人之间需要交流,如果真的有外星人的话,我们又如何去与之交流沟通,成为朋友呢?一定要慎之又慎,不然的话,就要弄巧成拙,变成死敌了。

“地球上的生命,那是遥远的星球用宇宙飞船特地来‘播种’的;那是别的星球送来的微小的有机物。”

1974年美国加利福尼亚州的骚克科学研究所诺贝尔奖获得者、科学家法朗西斯·克利克博士和莱斯里·奥开尔博士居然异想天开,提出这样的设想。而且,他们还在这个设想下,展开研究以求证自己假设的正确。

克利克博士由于发现作为生命基础的DNA构造的功绩,1962年被授予了诺贝尔医学生化奖。他对揭开生命之谜充满兴趣,提出了“宇宙胞子”这一新学说。其实,该学说在1908年就有人提出过。瑞典化学家斯潘第·阿雷尼乌斯曾经发表了他的观点:“有生命的细胞是从在宇宙空间漂泊的行星上,掉落下来的。正是这些行星使我们地球上有了生命。”这种观点实在太不科学了,一发表后,就遭到了学术界的否定。

但是,克利克等两位博士却这么说:“我们使用原子飞船的话,不管怎么远的星球都能够达到,因此其他发达的星球通过先进的交通设备,完全有可能把生命的细胞送到地球上来。此外,只要把下等的藻和细菌之类的东西,保持在摄氏‘零’度以下,它们就可以活100万年以上。”

“地球的生命与宇宙中的生命当然是同一个起源。现在已经发现证据啦!”这是英国著名的天文学家弗莱德·郝伊尔(伦敦大学的教授)和他的同事张德拉·威克拉纳辛格教授共同发表的新假说。

他们的根据是:在遥远的宇宙空间的星间物质(宇宙尘)中,发现了与落到地球上的石质陨石一样的石块,在这些陨石中发现其中含有有机物质。

“由于这些宇宙尘的存在,最初的生命之芽,可能就被散布在宇宙之中。”这个学说推翻了历来的定说,“生命来自大海”。不过,关于生命可能来自宇宙的说法,20世纪初的瑞典化学家阿雷尼乌斯就提倡过,他认为“宇宙胞子”很可能是从其他星球上飘落到地球上来的。郝伊尔的学说,其实也就是阿雷尼乌斯“宇宙播种”说的现代版。

在郝伊尔学说发表没多久,加拿大天文学者用射电望远镜在牡牛座附近的宇宙尘内,发现了宇宙空间最长的有机物质漂流带。这个发现正好可以为郝伊尔学说提供有利的佐证。

美国和英国的人工卫星不断地受到地球上调X线的干扰,当明白到这一点时,两国的科学家感到震惊。

根据马萨诸塞州理工大学物理教授华尔特·琉因博士的研究,这道奇怪的射线是在1976年10月28日突然发生的。此后,以一种强烈的力量迅速反复地放射出来,到12月31日,它彻底穿透了人造卫星。“NASA发射的人造卫星萨斯3号,在南大西洋巴西和非洲的中部飞巡,突然遭到了地球X射线的袭击,完全穿透了人造卫星,但上面的设备没有受损害。”

英国伯明翰宇宙研究部部长皮特·威尔莫亚博士也发现,英国尤利亚5号在同一时间通过南太平洋上空时,也遭受到共计有7次的地球X射线的袭击。这样的事情,在以前两年半的卫星观测中一次都没出现过。

“那种足以穿透宇宙飞船的强烈的X射线,以前在地球的上层大气中一次也没发生过。这也许是出于什么自然的原因,但也有可能是有什么别的人造卫星在探察?”威尔莫亚博士迷惑不解。由于核试验的原因也有可能,也有谣言说,苏联在太空中派遣了专门攻击人造卫星的“太空杀手”,但并没发现它的行迹,基本上是个谣言。那么地球上的X射线究竟从何而来,一切仍然是个谜。

1975年,人类向宇宙人直接发出了载有人类留言的电波信息。以前尽管有过接受宇宙文明的奥兹玛(OZMA)计划,还有把记录了人类与地球位置的图版用火箭发出去的“信”计划等等,但用电波直接向宇宙人呼唤,那可是第一次。

这个计划的提议者,就是当初奥兹玛计划的提倡者,美国国立天文学电离层中心的法兰克·德莱克所长。他对世界上最大的反射望远镜进行了改造,除了能够专门接受信息之外,也能够发射信息。为了纪念这个重大的改革,向宇宙人发射信息便成为一项纪念活动。

发送电波信息的目标是M13球状星团,其中带有行星的恒星有30万颗。大概有二分之一的学者认为那个星团中存在着文明。向M13球状星团发射信息的内容是:从1到10的数字,原子番号,地球人的姿态,太阳系等等。

只不过单单发射过去的路程所需时间就得:2.1万年!那么来回就得4.2万年。那真是个耗费时间的长计划哟!

美国航空航天局(NASA)开始正式地探究“宇宙人”。但他们不是以UFO为对象,而是着眼于远处的宇宙及其文明。

他们采取的方法是使用1972年发射上天、至今还在空中飞巡的天文观察卫星“克波尼可斯”号。把那颗卫星上的装置,调节到面对特定的星星,然后从那里使用紫外线作为激光,来调查能不能发送信息。如果能够发出的话,怎样来接受信息的计划也在酝酿中,美国和苏联在做这方面的研究。

计划中心的哈巴特·威斯可尼亚说,“与电波不同,激光是高科技的产物,谁都明白,像宇宙人那样头脑聪明的人,一定会使用激光的”。

1975年,他们选择了最近的花11光年就能够到达的波江星座为对象,据说在波江星座上可能有生命体的存在。“现在没有成果,单单调查一下,就得花上100年。”宇宙的研究,到底是个最耗费时间的事情啊!

“回绕地球的宇宙人卫星在活动的证据,被发现了!”1973年英国年轻天文学家邓肯·卢南发表了他的研究结论,引起了学术界的轩然大波。

根据他的研究,19世纪20~30年代在挪威、荷兰和法国等地实行变调电波发射实验的时候,在记录来自电离层的正常的反响七分之一秒之外,还收到了其他的反响,那奇怪的反响有从3秒到15秒不等的间歇,这些情况全部给记录了下来。

卢南把这些记录下的反响间歇解释为,它是来自宇宙卫星的一种具有知性内容的暗号。因为在制作了6张点图以后发现,它同天上的北斗星座和星的排列位置,完全一致。

进一步研究的结果,还表明这个宇宙卫星跟月亮在同一个轨道上运行;这个先进的文明星也绕着太阳运行。这个奇怪的卫星从几千年前开始,就一直围绕着地球,不断地发出信息,并且期待着人类的反响。我们人类应该怎样努力对它发出信号呢?

地球的三次灭顶之灾

1994年7月17日,轰动全球的苏梅克—利维9号彗星与木星相撞,那惊天动地的场面至今让人记忆犹新,木星被撞得遍体鳞伤,每一个彗核撞击所发出的能量都相当于几十万个氢弹同时爆炸。

“一颗巨大的彗星将于2126年8月21日同地球相撞……将毁灭人类7~9成。国际天文联合会不排除这颗彗星同地球相撞的可能性。”在一次空间会议上,天文学家斯蒂尔高瞻远瞩地说。

相撞又意味着什么呢?

所有曾经用望远镜观察过月球的人都知道,月球表面布满了陨坑,说不定月球本身就是一次大碰撞的产物。在地球的青年时代,一个像火星那么大的天体可能撞击过它,致使地球融化并向轨道中喷溅出大量的碎屑。最后,这些支离破碎的碎屑凝结在一起形成了月球。其实,地球比月球更频繁地挨撞。科学家指出:39~46亿年前,地球在形成时就“沐浴”在彗星群下,是彗星给地球带来了碳、氢、氮、氧等关键元素,才使地球上的生命得以出现。

但是,这种相撞也同时意味着毁灭。6500万年前,一个可能比哈雷彗星还要大的天体闯入现在的墨西哥尤卡坦半岛的缘海地区,撞出一个方圆170千米的大洞来。全地球顿时天翻地覆,大大小小的碎片冲天而起。

当这些数不清的“小导弹”开始下落并进入大气层时,只见闪烁的火流星布满天空,烈火烧光了地球的表面。当大火渐渐熄灭之后,接下来的便是地狱般无边的黑暗。与此同时,气温也急剧下降,由于火灾产生了大量二氧化碳,在严寒持续数月之后,紧接着便是几个世纪的温室效应,许多物种都在这一严酷时期灭绝了。

那次古老的大灾变说明,太空中的高速物体对我们所在的星球有巨大的影响。正因为如此,权威天文学家发布的这一惊人消息经一些报刊转载后,引起了人们的极大惊慌。世界末日真的要到了吗?我们怎么办?

为了消除人们的忧虑,另外一些科学家则认为:彗星过近日点的时间会有提前或推迟,有的预报位置和亮度偏差较大,不完全正确。以我们熟悉的哈雷彗星为例,它的回归期平均76年,但也有75~78年的提前或推迟的回归期。

斯蒂尔所预报的将与地球相撞的斯塔彗星,是1862年发现的彗星,于1992年首次回归,其周期约130年,与此同时,斯蒂尔预报它下次回归的年份是在2126年,比这次回归提前6年。有些科学家指出,仅有一次回归的数据,便作出了百年后与地球相撞的确切日期,按理而论,证据尚且不足。然而,值得提出的是,地球每10分钟便运行一个地球的距离,相碰仅有10分钟的时间。预报到某日(24小时),仅有6‰的机会相碰。

考古学家因此也站出来证实:人类至少有四五十万年的历史,可能并没有发生与彗星相碰的事。在近5000年中,也没有关于彗星与地球相撞的记载。

为了找出彗星与地球不会相撞的确切证据,科学家们做了如下举证:牛顿发现了万有引力定律,奠定了天体力学基础。但是,在天体力学中还有“行星运行的起源”和“行星井然有序的排列”是牛顿所不能解释的,他因此而将其推为“神的第一次推动”和“神的安排”。这些难题至今仍没有适当的论述;还有,浩瀚宇宙中无数的恒星也是各据一方,互不侵犯。这又是何力所使?

这虽是千载之谜,人们在偶然中也会得到启发:桌子上有几块N极向的圆柱形磁石,把它们放到一起,它们便会自动离开,出现了各据一方的局面。可见,恒星的互不侵犯是它们自己磁斥力的作用。据此,也就解释了行星井然有序的排列和各行其道的运行。

科学家们指出:当行星受到太阳引力作用时,必然如彗星一样直线而来。这就是行星运行的起源。当行星被吸引到两者斥力发生作用的0.4天文单位时,便不能再前进,被迫改为圆周运动。这就成了太阳系的第一行星——水星;第二个外来者到达0.7天文单位时与水星的磁力相斥,也改为圆周运动;第3至第9颗行星都有斥力,才互不侵犯,各行其道有规律地运行,据此便能作出准确的运动预报。

这样,太阳系9大行星的磁场已经布满了黄道面。彗星便无路可行,以哈雷彗星为例,行星磁场迫使它由黄道面转为在其上面运行,到达与太阳距0.5左右天文单位时(近日点)便被太阳的磁力挡住不能再接近,它在运行中若遇到行星次数多,迫使它多次绕道,便推迟了回归日期,反之则提前。这既是彗星回归期难以预报之处,又是彗星不会与地球及众行星相撞的原因。

值得一提的是:地球还独有第二道防线——大气层。没有磁场的陨石进入大气层时,便会被烧去一部分或爆为小块。几吨重的陨石对地球就无足轻重了。

然而,当彗星与地球相距一定的距离时,两者的磁力便会起作用,彗星便会绕道而行。只要它的方向稍稍一偏,失之毫厘谬以千里的情况便会发生。

一个类似的预报是,美国的肯顿博士经过精确的计算,认为有99%的可信度,月亮将于1992年分为两半,肯顿博士虽经精确的计算,却可能没把月亮的磁力考虑在内,所以与事实相悖。

月亮没有分裂成两半,彗星和小行星能否与地球相撞却难预料。

陨石可谓是地球的不速之客,尽管人们惧怕它、不欢迎它,然而该来的时候它却一定要来。从陨石爆炸方面来看,陨石光顾地球的破坏力是惊人的。1960年6月30日,一颗小行星在森林上空解体,燃烧的碎片直冲而下,方圆60千米的俄罗斯泰加森林顿时烈焰冲天,持续很长一段时间。1996年1月初,一颗直径1千米,重量10亿吨的天外岩石在距地球350万千米处几乎与地球轨道相切。如果这块石头撞向地球,将会灭绝地球上的大部分生物,天倾就不再是杞人自忧了。

科学家目前已经发现在太阳系直径超过1千米的各种天体大约有40万个,其中三十多个运行轨道将与地球轨道相切。英国玛丽皇后学院的天文学家I.威廉斯通过精确计算,认为最可能对地球造成麻烦的是被命名为“1983Ⅰ”的小行星,将于2115年光顾地球。这是继“2126年8月21日彗星撞击地球”警报之后的又一惊人预言,这颗小行星,是国际红外线天文卫星IRAS于1983年10月11日首次发现。目前该小行星正绕太阳运行,而且与地球越来越近。公元2115年,它将比月球更接近地球,现在还没有足够的数据加以证实,到时候它是否将与地球直接相撞,或者仅仅擦地而过。如果真要和地球直接冲撞的话,那么它那每小时13万千米的高速所造成的冲击力,其危害性相当于几百颗氢弹,将给人类带来难以想象的灾难。

美国国家宇航局已着手进行“拒客”工作。有关人员分为两组,一组负责追踪确认可能与地球轨道相切的天外物体,一组负责将其驱赶远离地球轨道。

直径超过100米可能给地球造成严重灾难的天体有30万个。安置在美国帕罗马山的哈雷天文望远镜昼夜不停运转,以确认是否有异常的情况。对于早发现、位置确定的危险物,可用太空大炮发射装有常规弹头的导弹,利用弹头靠近危险物爆炸时产生的推力使其偏移正常轨道,远离地球而去。如果距地球小于1.00005亿千米,则必须使用核弹头。一个100万吨爆炸力的核弹头产生的冲击波可将距地球150万千米的小行星或彗星推出正常轨道。

拯救地球的费用并非像人们的想象那样呈天文数字。安装一台望远镜约需5000万美元,年运作费1000万美元。至于驱赶开销,一些学者建议可利用美国和俄罗斯正在拆除的核弹头并根据需要稍加改装即可使用。

为什么说木卫二上可能有生命

1979年3月,当美国发射的“旅行者号”空间探测器飞越木星近空时,曾经意外地发现木星的第二颗卫星——木卫二具有非常奇特而与众不同的外貌,它并不是像许多固态天体那样,有着千疮百孔的陨星撞击坑,而是分布着许许多多纵横交叉犹如一大堆乱麻般的条纹。这是什么?

经过进一步研究,人们终于明白,原来木卫二有一个由厚厚的冰层构成的外壳,而这些纵横交叉的条纹便是冰壳反复破裂形成的裂缝。这些裂缝有的宽数10千米,长达上千千米,深100~200米。更有意思的是,人们还注意到,这些乱麻般交叉的裂缝具有褐色的基调,与其周围颜色较浅的部分相比,显得格外分明。对这种褐色物质所作的光谱分析表明,它们很可能是有机化合物的反映。大家知道,生命是由有机物组成的。木卫二冰壳裂缝周围可能存在着有机物,使人们对在那里可能存在生命充满了期望。

更令人兴奋的是,一项来自地球本身的发现,也大大鼓舞着人们在木卫二上找到生命的信心。原来,在地球南极有一些常年冰封的湖泊,极地微弱的阳光在透过上部厚厚的冰层以后,到达湖底的阳光已是微乎其微。然而,当人们潜入这冰冷的黝暗的湖底时,却意外地发现那里生活着一大片蓝绿藻,它们就靠那微弱的阳光生活。木卫二尽管离太阳远、温度低、阳光弱,但并不比南极冰湖下的环境差。而且由于自转和公转耦合的关系,它有长达60小时的白昼。因此,在木卫二上,一些冰壳裂缝刚刚破裂开来的地方,就有可能接受到较充足的阳光,从而使生命有可能在那里繁殖生存。一直到若干年后,当裂缝重新为厚厚的冰层所覆盖,生命也将暂时潜伏起来,等待另一次机会。

当然,以上所述只是一种推测,木卫二究竟有没有生命,还要等待人们去实地考察。

土星的光环究竟是什么

土星是一颗美丽的行星。它的赤道外面围着一圈明亮的光环,好像一个人戴了一顶宽边大草帽。在太阳系里,木星和天王星虽然也有光环,但却不如土星光环那么明亮和引人注目。

美人土星早在1610年,伽利略用他自制的望远镜观测土星时,就察觉到土星旁边似乎有些异样的东西,仿佛土星长了两个耳朵。差不多50年后,荷兰天文学家惠更斯用更先进的望远镜观测土星,才证实了它实际上拥有一个又薄又平的光环。

起先,人们以为土星光环是一整块的。直到19世纪中叶才通过观测认识到,土星的光环是由无数小碎块组成的,它们是些直径几厘米到几米的冰块和砂砾,走马灯似的围绕土星旋转着。土星的光环很薄,厚度只有10千米左右,但却非常宽,足以把我们的地球放在这个环上滚动,就像篮球在人行道上滚动一样。

从望远镜中看去,土星的光环光洁而平滑。然而,空间探测器发回的照片,却为我们揭示了光环复杂结构的真面貌。1980年11月,当“旅行者1号”空间探测器飞越土星时,拍土星光环摄到了极其清晰的土星光环照片,使人类第一次看清了土星光环的细微构造。原来,土星光环是由不计其数的明暗相间的细环组成,看上去就像密纹唱片上的波纹一样。

从地球上看,土星光环不但明亮、美丽,它的形状还在不断地变化。有几年土星像戴顶宽边草帽,而过几年这个光环居然会消失得无影无踪。对于这个现象,惠更斯早就作出了正确的解释。原来土星在运动过程中,它的光环常常以不同的角度朝向我们,当它的侧边恰好对着我们地球的时候,从地球看去,那薄薄的光环便不见了。大约每隔15年,土星的光环就会“消失”一次。例如,1950~1951年和1965~1966年,土星光环就曾从人们的视线中消失过。

难得一见的水星

水星,是太阳系中第二小行星,离太阳最近。

水星非常“调皮”,有时跑到太阳的身后,使我们根本看不到它;有时,它跑到太阳的前面,淹没在强烈的阳光里;只有当它跑到太阳的两旁,并且离得相对最远时,在黎明时的东方地平线上,或在黄昏时的西方地平线上,才能观察到它。

据传说,伟大的天文学家哥白尼在临终的时候,眼睛总是直直地望着窗外,似有未了之心愿。他的夫人问他,他用极为低沉的声音喃喃地说道:“我想看看水星。”

为天文事业奋斗终身的哥白尼,一生始终没有看见过水星,以至死而有憾。

在古罗马神话中,水星是商业、旅行和偷窃之神,即古希腊神话中的赫耳墨斯,为众神传信的神,或许由于水星在空中移动得快,才使它得到这个名字。

早在公元前3000年的苏美尔时代,人们便发现了水星,古希腊人赋予它两个名字:当它初现于清晨时称为“阿波罗”,当它闪烁于夜空时称为“赫耳墨斯”。

不过,古希腊天文学家们知道这两个名字实际上指的是同一颗星星,赫拉克赖脱(公元前5世纪之希腊哲学家)甚至认为水星与金星并非环绕地球运行,而是环绕着太阳在运行。

水星对地球而言,总是“犹抱琵琶半遮面”,人们很难见到它的真容。“水手”10号探测器于1973年和1974年曾三次造访水星,但只勘测了水星表面的45%,并且很不幸运,由于当时水星离太阳太近,以致于哈勃望远镜无法对它进行全面的摄像。

水星的轨道偏离正圆程度很大,近日点距太阳仅4600万千米,远日点却有7000万千米,并且,轨道的近日点以十分缓慢的速度绕太阳向前运行。在19世纪,天文学家们对水星的轨道半径进行了非常仔细的观察,但无法运用牛顿力学对此作出适当的解释。

存在着一个困扰了天文学家们数十年的问题:实际观察到的水星轨道值与预告水星轨道值之间有一个细微差异——每千年相差1/7度。有人曾经据理力争,认为在靠近水星的轨道上存在着另一颗行星,由此来解释这种差异。不过,最终的答案颇有戏剧性:爱因斯坦的广义相对论。

在1962年前,人们一直认为水星自转一周与公转一周的时间是相同的,从而使面对太阳的那一面恒定不变。这与月球总是以相同的一面朝向地球很相似。

然而,在1965年,通过多普勒雷达的观察发现,这种理论是错误的。现在我们已得知水星在公转二周的同时自转三周,水星是太阳系中目前惟一已知的公转周期与自转周期共动比率不是1∶1的天体。

由于上述情况及水星轨道极度偏离正圆,将使在水星上的观察者看到非常奇特的景象。处于某些经度的观察者会看到当太阳升起后,随着太阳向天顶的缓慢移动,其大小将逐渐明显地增大。然后,太阳将在天顶停顿下来,经过短暂的倒退后,再次停顿,然后继续落入地平线,同时明显地缩小。

在水星表面另一些地点的观察者,将看到不同的、但同样是异乎寻常的天体运动。

为了一窥水星的真面目,美国于1973年11月4日,发射了水星探测器“水星”10号。3个月以后,“水星”10号在运行时,从金星表面5300千米的地方飞过,拍摄了3500张照片后,借金星引力场作用,又于1974年3月29日第一次同水星相会,离水星表面703千米,以后“水星”10号就变成太阳系的一颗人造小行星。

通过探测器的探测,获得了许多有关水星的情报:

水星上的温差是整个太阳系中最大的,温度变化的范围为-183℃到427℃。相比之下,金星的温度略高些,但更为稳定。

水星上有稀薄的大气,不过水星的大气很稀薄,由太阳风带来的被破坏的原子构成。水星温度非常高,使这些原子迅速地散逸至太空中,与地球和金星稳定的大气相比,水星的大气频繁地被补充、被更换。

水星的表面表现出巨大的急斜面,有些达到几百千米长,3000米高。有些横处于环形山水星外貌的外环处,而另一些急斜面的面貌表明他们是受压缩而形成的。据估计,水星表面收缩了大约0.1%。

水星上最大的地貌特征之一是盆地,直径约为1300千米。如同月球的盆地,水星上的某些盆地很有可能形成于太阳系早期的大碰撞中,那次碰撞大概同时造成了星球另一面的奇特地形。

除了布满陨石坑的地形,水星也有相对平坦的平原,有些平原也许是古代火山运动的结果,但另一些平原大概是陨石所形成的喷出物沉积的结果。

水星有一个小型磁场,磁场强度约为地球的1%。至今未发现水星有卫星。

目前存在这样一些疑问:水星的密度几乎与地球相同,但在许多方面它与月球更为相似,它是否在一些早期灾难性大碰撞中丢失了轻质岩石?在我们无法看见的另一面是否存在着惊人的景观呢?

被称为“维纳斯”的金星

金星,中国人叫它“启明星”。清晨,当你推开窗户,眺望东方的地平线时,所看到的第一颗特别明亮的星就是金星。除太阳、月亮之外,金星是天空中最亮的星。

平时,金星总是被浓云密雾包围着,看不清它的真面目。虽然它是九大行星中距地球最近的一颗行星,但是我们对它知道的却非常少。

金星距离太阳第二近,是太阳系中第六大行星。在所有行星中,金星的轨道最接近圆,偏差不到1%。

在西方金星被称为“维纳斯”,是美和爱的女神。之所以以此命名,也许是对古代人来说,它是已知行星中最亮的一颗。当然,也有一些异议,认为金星的命名是因为金星的表面如同女性的外貌。

金星在史前就已被人所知晓。就像水星那样,它也有两个名字:晨星和昏星。

既然金星是一颗内层行星,从地球用望远镜观察,会发现它有位相变化。伽利略对此现象进行过观测,是他赞成哥白尼的太阳中心说的重要证据。

金星懒洋洋地自转,要经过243个地球日才转一圈,比它绕太阳公转一圈的时间还长。金星大气金星的自转和公转方向相反,所以金星上的太阳从西边升起,东边落下,白天和黑夜各长达59天。

人类为探索金星的奥秘作出了不懈的努力。第一艘访问金星的飞行器是1962年发射的“水手”2号。随后,又陆续有其他飞行器访问,迄今至少被访问20次了。

最近,美国一个轨道飞行器成功地用雷达绘制了金星表面地图。金星为什么被称为“地球的姐妹星”

通常,天文学家将金星誉为地球的姐妹星,其原因在于,有些方面它与地球非常相像:

——金星也是一个有大气层的固体球,其大小、质量、密度都同地球非常接近。

——在相对年轻的表面都有一些环形山口。

——它们的密度与化学组成都十分类似。

由于这些相似点,有人认为在金星厚厚的云层下面可能有生命的存在。但是,许多有关金星的深层次研究表明,金星的容貌和性格较之地球迥然不同。

金星的大气压力为90个标准大气压,相当于地球海洋深1千米处的压力。大气大多由二氧化碳组成,也有由硫酸组成的厚数千米的云层。

这些云层挡住了我们对金星表面的观测,使得它看来非常模糊。这稠密的大气也产生了温室效应,使金星表面温度上升400℃,达到了足以使铅条熔化的程度。虽然金星离太阳比水星离太阳远两倍,但金星表面比水星表面热。

云层顶端有强风,大约每小时350千米,但表面风速却很慢,每小时不到几千米。

金星可能与地球一样有过大量的水,但都被蒸发,消散殆尽,使如今变得非常干燥。地球如果再比太阳近一些的话也会遭到相同的命运。这就是为什么基础条件如此相似但却有如此不同的景象的原因。

金星表面地势较为平坦,由略微有些起伏的平原构成,也有几个宽阔的洼地和两个大高地。

资料表明,金星表面由熔岩流覆盖,有几座大屏蔽火山,类似于夏威夷和火星的奥林匹斯山脉。此外,金星的火山活动仍很活跃,不过集中在几个热点;大部分地区已形成固态地形,比数亿年前要安静得多了。

金星上没有小的环形山,看起来小的陨星在进入金星的稠密大气层时都被烧光了。金星上的环形山都是一串串的,看来是由于大的陨星在到达金星表面前,已在大气中碎裂开来了。

金星上最古老的地带形成于8亿年前。那时广泛存在的山火“擦洗”了早期的金星表面,包括几个早期形成的大的环形山口。

金星的内部构造可能与地球非常相似:一个直径3000千米的铁质内核,熔化的石头为地幔填充部分。金星的外壳比早先假定的硬得多,厚得多。就像地球,在地幔中的对流使其对表面产生了压力,但其他一些因素分散了这种压力,使得它不会像在地球那样,地壳在板块分界处被破坏。

金星没有磁场区,也许是由于自转速度较慢的结果。它没有卫星。

关于金星,颇令人们纳闷的问题是:主要由二氧化碳构成的金星大气层极其稠密,温室效应比地球强得多,但是金星的进化过程与地球为何又如此不同?

神秘之星——火星

火星就是有火的星吗?

当然不是的。

火星是地球的近邻,是距离太阳第四远的行星,其表面的自然条件与地球也比较接近,上面虽不一定有所谓“火星人”这种高级生命,但人们希望在火星上面存在生命的原始形态。因而,有些国家曾一度把火星作为探测的重点。

火星在希腊语中被称为战神,这或许是由于它鲜红的颜色而得来的;火星有时被称为“红色行星”。它的这一特征大概也是地球上的人类称它为“火星”的缘由吧。

据说,古罗马人曾把火星人当作农耕之神来供奉。而好侵略扩张的希腊人却把火星作为战争的象征——称它为战争之神,而“3月”份的名字也是得自于火星。

火星在史前时代就已经为人类所知。由于它被人们认为是太阳系中最好的住所(除地球外),它受到科幻小说家们的喜爱。但可惜的是那条被科幻小说中一个叫Lowell的人“看见”的“运河”以及其他一些什么的,都只是如白雪公主中的公主一样,是虚构的。

人类为探测火星花了大力气。第一次对火星的探测是由“水手”4号飞行器在1965年进行的。此后,人们接连又作了几次探测,包括1976年的两艘“海盗”号飞行器。经过长达20年的时间,在1997年的7月4日,“火星探路者”号终于成功地登上火星。

火星的轨道是显著的椭圆形。因此,在接受太阳照射的地方,近日点和远日点之间的温差将近30℃。这对火星的气候产生巨大的影响。

火星上的平均温度大约为-55℃,但却具有从冬天的-133℃到夏日白天的将近27℃的跨度。尽管火星比地球小得多,但它的表面积却相当于地球表面的陆地面积。

火星的自转周期几乎与地球一样长,它以与地球差不多同样的姿势绕太阳公转,有四季交替和变化的气候。

火星表面的最大特征,是具有固态表面地形。火星上面不乏一些壮观的地形,包括形成年代已久的环形山和形成不久的山谷、山脊、小山及平原。

在火星的南半球,有着与月球表面上相似的典型的环状高地;北半球大多由新近形成的低平的平原组成。这些平原的形成过程十分复杂,缘于南北边界上出现几千米的巨大的高度变化。

形成南北地势巨大差异以及边界地区高度剧变的原因还不得而知,有人推测这可能是由于火星外层物质增加的一瞬间产生的巨大作用力所形成的。最近,一些科学家开始怀疑那些陡峭的高山是否在它原先的地方。

如同水星和月球,火星也缺乏活跃的板块运动。没有迹象表明火星发生过能造成像地球般如此多褶皱山系的地壳平移活动。由于没有横向的移动,在地壳下的巨热地带相对于地面处于静止状态。再加之地面的轻微引力,造成了凸起的巨大火山。但是,人们却未发现火山最近有过活动的迹象。

火星上曾有过洪水,地面上也有一些小河道,许多地方曾受到明显的侵蚀。在过去,火星表面存在过干净的水,甚至可能有过大湖和海洋。但是这些东西看来只存在很短的时间,而且据估计距今也有大约40亿年了。

在火星的早期,它与地球十分相似。像地球一样,火星上几乎所有的二氧化碳都被转化为含碳的岩石。可是,由于缺少地球的板块运动,火星无法使二氧化碳再次循环到它的大气中,从而无法产生意义重大的温室效应。因此,即使把火星拉到与地球距太阳同等距离的位置,火星表面的温度仍比地球上的温度低得多。

火星的两极永久地被固态二氧化碳覆盖着。这个冰罩的结构是层叠式的,是由冰层与变化着的二氧化碳层轮流叠加而成。

在北部的夏天,二氧化碳完全升华,留下剩余的冰水层。由于南部的二氧化碳从来没有完全消失过,所以我们无法知道在南部的冰层下是否也存在着冰水层。

出现这些现象的原因人们也不甚清楚,或许是由于火星赤道面与其运行轨道之间的夹角的长期变化引起气候的变化造成的,或许是在火星表面下较深处有水存在的缘故。

太阳系的小太阳——木星

就体积而言,木星是太阳系九大行星的老大。在夜空中,它的亮度属第三,仅次于月亮和金星。

从外部观望,木星云带绚烂多彩,呈现黄、红、白、黑等各种颜色,十分漂亮。除了五彩缤纷的云,木星上还有狂飙的风和白炽的闪电。

1979年,“旅行者”号探测器曾经在木星的白昼观测到了急速扩张的耀眼的云,有1000多米宽,近百千米高,直插苍穹,颇为壮观。

1979年,“伽利略”号探测器拍下了木星白昼一场特大风暴的珍贵图像,之后,又记录下了木星夜晚的强烈闪电信号。

另一个空间探测器“旅行者”号在此之前也观测到了木星夜晚的强烈闪电。

这些闪电的亮度是地球上闪电亮度的几百倍,最强烈的一次闪电释放出的光能相当于3000万盏100瓦的电灯在一秒钟内发出光亮的总和。

大家都知道,在地球上,每当有暴风和闪电,那十之八九会有暴雨。木星上不仅有暴风和闪电,而且九星之王其强度都远远大于地球上的暴风和闪电的强度。那么,木星上是否也有倾盆大雨呢?

据科学家们初步推测,木星上的闪电也与暴风雨有关,这与地球上是相似的。他们指出,从目前所获得的大量有关木星闪电的资料看,木星上可能存在水,因为水是产生闪电的基本因素。

木星上的暴风类似地球上的飓风。地球上的飓风从海洋吸取水汽,然后把它们带到大气层凝结成水珠,形成雨。但是现在的问题是,迄今为止还没有发现木星上有海洋存在。也许木星上存在着湿气,但不是以液体的形成存在的。那么,木星上的闪电究竟从何而来的呢?目前尚无确切的答案。

人类对木星的观测还有很大局限性,比如,行星际探测器至今尚未在木星白昼发现闪电,也没有在木星夜晚发现云。不过,也不能就此得出白昼没有闪电,夜晚没有云的结论,因为白昼极亮,即使有闪电也难以发现,夜晚又太暗,即使有云也不易被察觉。

你知道冥王星惟一的一颗卫星吗

人们对惟一的东西都非常感兴趣,所以,天文学家对冥王星的惟一一颗卫星——冥卫一表现出了较大的兴趣。而且,通过这颗卫星,可以更好地探知冥王星本身的真相。

冥卫一的英文名称是“Charon”,是以神话中的人物命名的,他是专门将死者从冥河摆渡到冥界的。

虽然学术界以这个神秘人物来命名冥卫一,但冥卫一的发现者这样命名也是为了纪念他的妻子Charlene,其英语发音的第一音节是相同的。

冥卫一是在1978年被发现的。在此之前由于冥卫一与冥王星被模糊地看成一体,因此冥王星被认为比实际的要大许多。

在太阳系中,冥卫一与其主星冥王星的相对大小而言,它是“最大的”一颗卫星。冥卫一的半径约为冥王星的一半,因此有些人认为冥王星与冥卫一是一个双星系统,不是行星与卫星的关系。

冥王星与冥卫一的自转是同步的,这在太阳系中是独一无二的。它们俩始终保持以同一面相对,这使得在冥王星上看见的冥卫一的位相十分有趣。

冥卫一的组成成分还不知道,但其密度低,大约是每立方厘米2克,这表明它可能很像土星的冰质卫星。这颗独一无二的卫星的表面可能覆盖着冰水。

有人认为,冥卫一是经过一次巨大的撞击形成的,就好像形成月球那样。人们还认为冥卫一拥有一个值得注意的大气层。

令天文学家感到棘手的是,目前,他们无法知道冥王星与冥卫一存在什么样的地质特点与演化过程,他们还没有更为妥当的办法来确定冥卫一与冥王星的基本质量与密度。这些问题将在21世纪提上历程。

天王星是个高温的液体球吗

天王星是太阳系中离太阳第七远的行星,从直径来看,是太阳系中第三大行星。天王星的体积比海王星大,质量却比海王星小。天王星、海王星和冥王星是太阳系九大行星中的远日行星。

天王星乌拉诺斯是古希腊神话中的宇宙之神,是最早的、至高无上的神。他是该亚的儿子兼配偶,是农神土星、独眼巨人和泰坦(奥林匹斯山神的前辈)的父亲。

天王星是由威廉·赫歇耳于1781年3月13日发现的,是现代发现的第一颗行星。事实上,它曾经被观测到许多次,只不过当时被误认为是另一颗恒星而已。

只有一艘行星际探测器曾到过天王星,那是在1986年1月24日由“旅行者”2号完成的。大多数的行星总是围绕着几乎与黄道面垂直的轴线自转,可天王星的轴线却几乎平行于黄道面。在“旅行者”2号探测的那段时间里,天王星的南极几乎是接受太阳直射的。

这一奇特的事实表明,天王星两极地区所得到来自太阳的能量比其赤道地区所得到的要多。然而,天王星的赤道地区仍比两极地区热。这其中的原因还不为人知。

天王星基本上是由岩石和各种各样的冰组成的,仅含有15%的氢和一些氦。天王星和海王星在许多方面与木星和土星在去掉巨大液态金属氢外壳后的内核很相似。

天王星的大气层含有大约83%的氢、15%的氦和2%的甲烷。大气中有风暴云,但没有大气旋涡,看起来好像是个蓝色大球。高层大气的温度比较高,南极上空达1800℃,北极则达2400℃。

如其他所有的气态行星一样,天王星也有带状的云围绕着它快速飘动。但是这些云太微弱了,只能在“旅行者”2号经过加工的图片才可看出。

天王星呈蓝色是由于其外层大气层中的甲烷吸收了红光的结果。那儿或许有像木星那样的彩带,但它们被覆盖着的甲烷层遮住了。

像其他所有气态行星一样,天王星有光环。它们像木星的光环一样暗,但又像土星的光环那样由直径为10米的粒子和细小的尘土组成。天王星有11层已知的光环,但都非常暗淡。

有时在晴朗的夜空,可用肉眼看到模糊的天王星。但如果你知道它的位置,通过双筒望远镜就十分容易观察到了。

恒星能永恒吗

夜空中的星星年复一年地在那里闪烁,似乎永恒不变。恒星果真是永恒不变的吗?其实不然,恒星不仅在宇宙中以极快的速度运动,它还会像我们人类一样,从诞生、成长到衰老,直至死亡。我们在天空中看见的星星,有的刚刚诞生,有的还很年轻,有的正当壮年,有的却已苟延喘息、濒临死亡。只是恒星从诞生到衰亡要经历几百万年甚至上万亿年,人类文明史对于恒星的一生只是短暂的一瞬,所以,在我们的感觉上恒星似乎是永恒不变的。

最初,形成恒星的是一种叫“氢分子云”的星际气体云。氢分子云内部密度并不均匀,一旦受到外部的扰动,密度高的地方就会在自身引力作用下收缩。随着收缩不断地进行,云块内部密度与温度也不断地增高,由原来的氧分子云一步步变成氢原子云、离子云、红外星。此时,一颗新的恒星就算是诞生了,这时的恒星称为原恒星。

原恒星继续慢慢地收缩,当内部温度达到700万摄氏度时,氢聚变为氦的热核反应被点燃了,它持续不断地产生巨大的能量,使得恒星内部压力增高到足以与恒星的引力相抗衡,使恒星不再收缩。恒星刚形成之际,它们还埋在残余的云物质之中,我们只能用红外望远镜或射电望远镜探测到它们。刚诞生的恒星会不断地向外抛出物质流,产生强大的星风,速度达到每秒几百、几千千米。当星风把恒星周围残余云物质驱散之后,我们肉眼便见到了闪烁质量较大的恒星内核中的氢燃烧得非常快,只要几百万年就会消耗殆尽的星星。这时的恒星已经“长大成人”,很少变化,我们称它为主序星。主序星阶段是恒星一生中精力最旺盛的时期。我们的太阳就是一颗主序星。

恒星在主序星阶段停留的时间取决于氢核燃料的消耗速度,质量越大的恒星消耗越快,这一阶段越短。太阳属于中等质量的恒星,它在这一阶段约可停留100亿年,现在太阳的年龄大约为50亿“岁”。比太阳质量大10倍的恒星,主序星阶段只有几千万年。质量只有太阳几分之一的恒星,主序星阶段则可长达万亿年以上。

当恒星中心部分的氢核燃料耗完以后,恒星就开始走下坡路了。这时,恒星内部开始了氦聚变为碳的热核反应,而氢热核反应转移到恒星的外层,使外层温度逐渐升高,体积不断膨胀,最后,恒星的体积会增大到原来的千倍以上,成为一颗又大又红的红巨星。冬夜星空中明亮的“参宿四”就是一颗著名的红巨星。太阳将来成为红巨星时,大约还可以停留10亿年。

经过了红巨星阶段之后,恒星便进入了老年行列。老年恒星的主要特点就是不稳定,它们的大小、亮度都呈不稳定的变化,著名的造父变星和绝大多数变星都处在这一阶段。

恒星的老年期比较短,这时,恒星内部氦、碳、氧先后参与了热核反应,最后全部变成铁,能源耗竭致使热核反应停止。原先热核反应产生的大量能量由于被中微子和辐射带走,恒星内部压力大大降低,引力再次战胜了辐射压力,于是恒星再次收缩甚至快速坍缩,恒星便面临着死亡。类似太阳一类的恒星,经过平静的收缩变成了白矮星,明亮的天狼星的伴星就是一颗典型的白矮星。质量大的恒星会产生剧烈的坍缩并引发超新星的爆发,抛出大量的物质后,它的内核坍缩成一颗中子星或黑洞。

恒星就这样结束了它壮丽的一生。

恒星为什么会发出不同颜色的光

天上的恒星,表面温度都在上千摄氏度甚至几万摄氏度,所以它们能够发出包括可见光在内的各种电磁辐射。就拿太阳这颗普通的恒星来说,每秒钟从它表面辐射出的能量,大约是382亿亿亿瓦,这么多能量可以供全世界使用1000万年!

为什么恒星会发光呢?这是100多年来天文学上的疑谜,到了最近几十年才揭开了谜底。20世纪初,伟大的物理学家爱因斯坦,根据他的相对论推出了一个质量和能量关系式,从而帮助天文学家解决了“为什么恒星会发光”这个问题。原来,在恒星内部,温度高达1000万摄氏度以上,在这样高的温度下,物质会发生热核反应,例如,由4个氢原子核聚变成为1个氦原子核,在这个过程中损失一部分质量,同时释放出巨大的能量。于是,这能量由内传到外,以辐射的方式,从恒星表面发射至空间,使它们长期在宇宙中闪闪发光。

行星的温度远低于恒星,因此它们自己是不会发光的。行星的质量比恒星小得多,太阳系行星质量最大的木星还不到太阳质量的千分之一,因此,行星从引力收缩而得到的能量,决不可能使其内部温度高到发生热核反应的程度。

星星有不同的颜色,这可不是谁画上去的,而是星星确实是五颜六色的。

星星为什么会有不同颜色呢?其实,星星颜色的不同,说明它的表面温度不同。太阳光看上去是白色的,实际上由红、橙、黄、绿、青、蓝、紫七种颜色的光组成。星星的温度越高,它发出的光线中蓝光的成分就越多,看上去这颗星就呈蓝色;如果这颗星的温度很低,那它发出来的光线中红光的成分多,看上去它就是一颗红颜色的星星了。

因此,恒星的颜色是由它的表面温度所决定的,不同的颜色,代表着它们有着不同的表面温度。下面就是星星的颜色和表面温度之间的大致对应关系:

星色表面温度(℃)

蓝40000~25000

蓝白25000~12000

白11500~7700

黄白7600~6100

黄6000~5000

橙4900~3700

红3600~2600

这样,我们就可以根据星星的颜色,来估计一颗恒星的表面温度大约是多少了。太阳看上去是黄颜色的,它的表面温度是6000℃;织女星发出白色光,那它的温度就比太阳高,差不多有1万摄氏度;天蝎座那颗亮亮的“心宿二”,从它的火红色就可知道它的表面温度不会超过3600℃。

恒星光谱示意图星星真的会眨眼睛吗

夏天的晚上,繁星满天,抬头仰望天空,星星都在眨眼哩。其实,星星根本没有眼睛,它们哪里会眨眼呢?那么大概是我们自己眨了眼,错把星星当成在眨眼了?不是,因为即使你瞪着眼睛瞧,仍然会发现星星的光亮忽闪忽闪地动。这是什么缘故呢?

这是大气在变戏法。

我们知道,大气不是静止不动的,空气热了会上升,冷了又会下降,还有风在吹来吹去。如果能够给空气的分子着上一些颜色,你就能看到五彩缤纷的空气正在上下翻腾。

星光在来到我们的眼睛以前,必须经过地球的好几层大气,大气既是动荡不定的,各层大气的温度、密度又各不相同,这样一来,光线的折射程度也各不相同。星光来到这里时,就会经过许多次的折射,时而会聚,时而又分散。正是这层动荡不定的大气,挡在我们面前,使得我们在看星星的时候,总觉得星星在闪烁,就像眨眼睛。

恒星为什么会爆炸

星海茫茫的夜空,有一种星看上去似乎永远不动,这便是“恒星”。

历史上,人们依据恒星相对位置不变的特征,把恒星三三两两地组合起来,将星空划分成若干个区域,后来这些区域被称为星座。

恒星爆炸后,外层迅速向外抛去,散发出一团团巨大的气体和尘埃。质量较大的恒星爆炸后有可能形成一个黑洞。1928年国际天文学联合会以古希腊星座为蓝图,确定了现在国际上通用的88个星座。古老的星座中蕴藏着许多美丽的神话,为平静的夜空增添了许多生气。

通常,在天气晴朗的夜晚,人的肉眼能够看到6900多颗较亮的恒星。但是,一个人无论何时只能仰望“半个天”,因此只能看到3000多颗星,其中大部分是恒星。

我们能用肉眼见到的蟹状星云等一系列星云都是恒星爆炸后留下的残迹——超新星遗迹。超新星是大质量恒星在晚年发生激烈的、粉碎性的爆炸现象,一般质量较小的恒星不以超新星爆发终止它的一生。

大质量的恒星在晚年为什么会爆炸呢?长期以来众说不一,现在比较普遍的理论是“核爆炸理论”。

在恒星的演化过程中,恒星内部的热核反应是一个持续不断的过程。一般先是以氢为“燃料”,即在极高温度下氢原子核聚变过程中释放出巨大能量。

当星核的氢燃料耗尽后,星核中心收缩释放的引力能使恒星的氢壳层燃烧,同时恒星外层向外膨胀。

随着星核的收缩,开始升温。高温使得氦开始燃烧,与此同时星核收缩停止。

在氦燃料耗尽时,星核又开始收缩。当星核收缩到一定程度,核内的温度达到8亿摄氏度时,碳开始燃烧。碳燃烧的灰烬主要是氧,氧燃烧后的灰烬是硅。

这样,每当恒星一种燃料用完之后,星核便会收缩释放热量,更高的温度导致下一种燃料燃烧。

恒星在晚年变得越来越不稳定,热核反应一轮接一轮地进行,热核反应的速率也进一步加快,导致整个恒星爆炸。

生命来自于宇宙吗

早在100多年以前就有人预言,星际空间分布着数量极多的微生物,但是,受当时技术手段限制和达尔文进化论的影响,这一预言并未引起科学界的重视。

20世纪60年代初,英国科学家宣布,星际尘埃带有极为细小的呈一定规则的碳颗粒。消息一公布,马上有许多人对来自天外的陨石发生了浓厚的兴趣。

一般情况下,无机物颗粒的形状是杂乱无章的,但一些陨石上的碳颗粒则呈双层结构,表面十分光滑,经化学处理可清楚瞧见丝纹图案,这表明碳颗粒可能由孢子或细菌转化而来。

1972年,人们发现太空中有分子链和氨基酸。1975年,射电望远镜探测到甲醛聚合体。之后,人们又找到了包括甲酸、甲烷、乙酸等在内的50多种有机分子。以碳为基础的门类丰富的有机物,凝聚于宇宙尘埃上,或以彗星为载体,随时准备飞向任何一个星球。

最新的研究显示,每天都有数百万直径几十厘米到几十米不等的宇宙“雪球”坠入地球。在彗星途径地球时,这类现象格外明显。宇宙雪球、宇宙尘埃以及无数的大大小小的流星雨,携带着品种丰富的有机物。人们在想:来自宇宙深处的“客人们”会不会带来生命的种子呢?

1981年,日本科学家发现,彗星受到阳光照射时,除放出气体形成的一条尾巴外,还有另一条尾巴存在。组成第二条尾巴的粒子,大小与真菌一样。

后来,科学家们又陆续从金星、木星的大气层中找到了形同细菌的粒子。金星上的粒子,折光率与生物孢子相同,木星上的粒子则与杆状细菌一致。

事实上,美国早在20世纪60年代末就已经知道太空中有细菌存在了。如今,无边无际的宇宙中存活着相当高级的微生物已不再是鲜为人知的事实了。

生命来自宇宙。尽管地球生命依其特定环境而发展为一定的形式,但这并不意味着只有地球才有生命。随着宇航技术的发展,人们总有一天会从宇宙中找到生命现象。

人类在宇宙中是孤独的吗

人类在宇宙中是孤独的吗?其他星球上或其附近有没有生命存在?这些问题的提出比我们知道恒星是别处的太阳还要早。

讲到宇宙中其他天体上的生命,这里只谈那种和地球生命的化学成分类似的情况。特别要提出的先决条件是,这种生命必须依赖于液态水。

生命进化的过程如此漫长,把它和恒星演化的茫茫宇宙中是否还有其他高级生命的存在。时间去对比没有什么不恰当。至少35亿年前地球上就已有了比较高级的单细胞生物蓝藻,而地球的年龄也不过50亿年。

如此看来,那些大质量恒星发光发热只能维持几百万年,因此对于生物进化来说实在太短暂了。寻找生命的合适空间对象只有从质量相当于或小于太阳的恒星中去找。

我们所在的银河系中大约有上千亿颗恒星,绝大多数的质量都算“合格”,因为质量较大的恒星终究比较少。

银河系中恒星的发光发热年代都很长,都足以使智慧生物渐渐形成。然而有一个重要条件,这颗恒星必须是单星而不是双星。因为在双星系统中,行星很可能不是被其中一颗恒星吸进去就是被甩到宇宙空间。如此算来,银河系中还有400亿颗恒星伴有行星。

有了行星还不够,这颗行星与恒星的距离及其质量至少能够满足液态水的存在。

如此算下来,银河系中可能有100万个存在生物的行星,这些生物也演变了40亿年,只不过处于各自不同的进化阶段。

美国电影《外星人》中的外星人造型。人类最感兴趣的莫过于能够和外星生物联系和交往,而就人类而言无线电信号是目前进行这种联系的惟一可能的办法。

可是,处于进化早期阶段的蓝藻不会发射无线电信号,只有较高级的智慧生命才能做到这一点,但一个文明社会究竟能存在多久呢?

如果这种比人类更进步的生命能保持足够的兴趣和能力,和平地过上100万年,那么,能够向宇宙空间发射信号的文明社会只有250个。

如何和这些社会进行联系呢?我们假定这些行星是均匀地分布在银河系中,那么相邻的两个文明社会的平均距离是大约4600光年。我们发出的信号要飞行4600年才能到达离我们最近的文明社会,要等到回音至少需要9200年!希望我们的文明能持续到那一刻。

木星探测器“先驱者”10号和11号各带有一块雕刻镀金铝饰牌。这两个飞行器完成探测木星任务后将飞出太阳系奔向宇宙空间。它们带去了有关我们在宇宙中的位置和关于人类本身的情况。

别处的智慧生物只要把这种宇宙名片拿到手,就能了解我们人类相当多的情况。不过将成为他们不解之谜的是我们人类的背面长相如何。

星系是怎样分布的

20世纪20年代,人类的宇宙概念有了一次巨大的突破,原来以为浩瀚的银河连同满天星斗组成的银河系就是宇宙,但是,旋涡星云距离的研究表明,银河系只是宇宙海洋中的一个小岛,类似的星系何止成千上万,人们心目中的宇宙扩大了。

那么,这许多星系在宇宙中是如何分布的呢?有什么特征呢?

首先,让我们把目光投向最近的邻居。天文学家把看起来比较大的星系,或者其中恒星比较容易分辨的星系,看作近邻,并把近邻星系组成的星系系统称为本星系群。

麦哲伦在南半球航海时发现的大、小麦哲伦云就是两个近邻星系,但由于不同星系的亮暗相差悬殊,有些近而暗的邻居发现得很晚。1937年,沙普利首先发现本星系群中的一个“矮子”——玉夫座星系,它的距离只有麦哲伦云的三分之一。第二年找到了另一个“矮子”——天炉座星系,20世纪50年代起又先后发现狮子座I、狮子座Ⅱ、大熊座、天龙座等矮星系。1977年才发现的船底座星系非常暗弱,如果把它移到猎户座成四边形的几颗恒星旁边,它连这些恒星的亮度也比不上,这是目前所知的最暗的一个星系。大小麦哲伦云,连同这些更小的矮星系,都围绕在比它们亮得多的银河系的近旁。

在本星系群中能与银河系媲美的另一个明亮星系是仙女座大星云,它比上述矮星系和麦哲伦云都远得多,它本身也被一些较暗的星系包围。与银河系周围的大小麦哲伦云相当,仙女座大星云也有两个较大的近邻:M32和NGC205,稍远还有NGCl47、NGCl85、M33等更暗一些本星系群的总质量约是太阳质量的1000亿倍,是宇宙间的巨无霸。的星系。在银河系周围有许多矮星系的启发下,1972年范登堡在仙女座大星云附近也发现了仙女座Ⅰ、仙女座Ⅱ、仙女座Ⅲ等矮星系。这些矮星系连同上述M32、M33等簇拥着巨大的仙女座大星云,组成了另一小群。

本星系群就是由分别以银河系和仙女座大星云为中心的两个小群所组成的,共包括约三四十个星系,半径约百万秒差距。仙女座大星云和银河系有很多类似之处:都是旋涡星系,质量和光度巨大,有矮星系包围。它们在彼此引力的吸引下围绕着一个共同的中心旋转,形成一个巨大的星系对,这种星系成对的现象在宇宙中并不罕见,有趣的是,银河系和仙女座大星云的自转方向刚好相反,一个顺时针,一个逆时针,看来不像是两个毫不相关的星系的偶然相遇,有人推测,它们或许是在大致相同的时间,由同一原始气体云内的两个相邻的旋涡发展演化而成的。

与本星系群类似的星系群在宇宙中比比皆是,它们的共同特点是结构比例不规则,主要由旋涡星系和不规则星系构成,很少出现巨大的椭圆星系或透镜星系。

与星系群大小相仿的另一种星系的集合叫做小星系团,它们与星系群不同的是,团中有一个密集的核心,多数情况下没有旋涡星系,主要由椭圆星系和透镜星系组成。

星系团是宇宙中最大的引力束缚体系,它吸引了成百上千个星系。在比本星系群大10倍的空间范围内,除了在银河平面附近难以看到河外星系外,已对所有星系群或小星系团都作了仔细的观测研究,共找到约55个星系集团,结果表明,只有10%到20%的星系是单独出现的,多数星系分别归属各星系群或小星系团,结果还表明,星系群的大小并不相同,有大有小,有的群与群还会靠近而形成更大一些的结构。

在室女星座的北部,与后发星座毗连,有许多星系,在这一小块天区内,仅明亮的星系就有200多个,被称为星云之地。这就是离我们最近的比星系群或小星系团大得多的一个星系团——室女座星系团,它是由3000个以上星系组成的,其中约78%为旋涡星系,少数是不规则星系,椭圆星系占星系总数19%。有趣的是,椭圆星系数量虽小,但最亮的四个星系都是椭圆星系,其中包括著名的活动星系M87,室女星系团结构松散,看不出密度很大的明显中心,称为不规则星系团,类似的还有武仙座星系团。

在天空方位上离室女座星系团不远,但却比室女座星系团远7倍的是后发座星系团,它是由成千个巨大的星系和一万个以上的矮星系组成的,估计团中85%以上是椭圆星系和透镜星系,团中心有两个非常明亮非常巨大的星系,通常称为超巨椭圆星系。围绕着它们,有一个明显的星系密度较高的中心区域,以此为中心,大量星系对称地规则地分布在四周,后发星系团的这些特征是许多巨大的星系团所共有的,通常称为规则星系团(与称为不规则星系团的室女座星系团不同)。这类规则星系团虽然很壮观,但实际上只比星系群大三倍左右。

星系是怎样分类的

星系的分类方法主要有以下两种波段分类,将星系划分为正常星系和活动星系;形态取名则可将星系划分为椭圆星系,漩涡星系及其他。

(1)按波段分类可划分为正常星系和活动星系。

1923年哈勃用威尔逊山天文台的2.5米望远镜开拓了河外天文学的研究,60多年来,对河外星系的研究取得了极大的进展,在宇宙中已经发现了数亿个星系。目前,用大望远镜看到的最远星系,估计离我们达300亿到500亿秒差距之遥。对于许多星系,人们还用射电望远镜空间卫星等进行多波段的观测,有许多令人惊讶的重大发现。

几千年来,人们一直靠肉眼观测天空。近几百年才用光学望远镜扩大视野,观测的波段限于可见光。射电望远镜,空间卫星的多波段观测只是近几十年的新进展。因此,长期以来人们习惯于恒星高悬天空的现象,很自然地把那些辐射主要来自其中各个恒星的星系称为正常星系。其余能在可见光外其他波段发出更强辐射的星系,则统统称之为活动星系。其实,每个正常星系都有不同规模的活动,也可能都经历过活动的阶段,所以,这种分类带有一定的任意性。

近百年来,对正常星系研究的结果表明,虽然星系非常庞大,又有着恒星、星际气体和尘埃等多种组成成分,但它们的结构和形状却有着惊人的单纯性。如果忽略细微的差别,绝大多数星系都可以简单地归为椭圆星系和旋涡星系两大类,不能归入这两大类的星系即所谓不规则星系不超过星系总数的3%。

(2)以貌取名可划分为椭圆星系、旋涡星系及其他。

星系形态的研究始于20世纪20年代,所谓星系形态,就是通过肉眼或照片观测到的星系整体的几何形状。哈勃最早对星系作了大量观测,并于1926年提出了第一个按形态划分的星系分类系统。随后几十年中,虽然有人提出过其他分类方法,类型更多更细致,但哈勃的基本思想至今仍然是星系分类的基础。

哈勃提出的第一类星系是椭圆星系(E)。它们看起来都很相似,显不出任何结构,在天EO型椭圆星系球上呈圆形或椭圆形。早期分类中,进一步按观测所见的椭圆星系的扁度,即长短轴之比而分为次型。但是看到的扁度并不代表椭圆真正的扁平程度,因为观测的结果与椭圆星系在天空中的方位,即与它的长短轴在天空的指向有关。更有物理意义的是把椭圆星系按照光度的大小记为矮椭星系(dE或E-),一般椭圆星系(E)和巨椭圆星系(cE或E+)。巨椭圆星系可能是最大的星系,矮椭星系往往很小甚至与球状星团的大小和质量相当,从椭圆星系中心往四周看去,相当缓慢地逐渐变暗。

第二大类是旋涡星系(S),银河系就是一个典型代表,它们因在照片上呈现出明显的旋臂结构而得名。其实从物质分布来看,臂与相邻臂之间的对比并不很悬殊,但旋臂上有许多漩涡星系明亮的年轻恒星,眼睛或照相底片对它们特别敏感,因而容易显现出来。旋臂开始于核球部分的称为正常旋涡星系(S),它的旋臂沿核球边缘的切线向外螺旋状伸展出去。另外一种情况是,旋臂开始于横跨核球的一个棒状结构且通常旋臂与棒垂直,这称为棒旋星系(SB)。还有的旋臂沿着核球外面一个环状结构的切线方向发出,在分类时注上r字母,以便与正常情况(注字母S)相区别。但是,旋涡星系性质的研究表明,SA、SB的区别,r、S的变态,可能都是较为次要的细节。星系内含的物理性质主要随旋涡星系所处阶段的不同而不同。至于星系所处阶段,则按(1)核球与银盘的相对大小,(2)旋臂卷紧的程度,可区分为Sa(或SBa)型,Sb(或SBb)型和Sc(或SBc)型三类,Sa(或SBa)型中心区大,旋臂紧卷;Sb(或SBb)型中心区较小,旋臂较大而舒展;Sc(或SBc)型中心区为一小亮核,旋臂大而松弛。近年来又发现一些星系,它们与旋涡星系一样,也有扁平的银盘,但是不存在旋臂结构,人们称之为透镜星系,介于哈勃分类的椭圆星系和旋涡星系之间,记为SO或SBO。

旋涡星系的核球看起来很相似,其光强也是由中心向外逐渐变暗,银盘向外显著变暗,因此外边缘更为明显。

哈勃把不能划归椭圆星系或旋涡星系的少数星系称为不规则星系,它们不存在核球,也没有确定的旋臂系统,主要由圆盘状结构组成,但其表面亮度较低,而且在亮度分布上有很多不规则结构。

下面将会看到,虽然上述分类主要根据星系形态,但星系的一些重要物理性质,往往与形态有关。一般,把上述分类记为:

E-SO<E—Sa—Sb—Sc

SBa—SBb—SBc

并把这一从左到右(也叫从“早”到“晚”)的次序称为哈勃序列。

有趣的“鼠尾”、“环”状星系

星系很少单独存在,往往成群成团,也有的组成星系对、三星系、四星系等(与恒星类似),1940年霍姆堡首先研究了多重星系出现的几率,大体上说,n个星系组成系统的几率为2-n。

特别有趣的是观察两个很靠近的星系,一个最明显的例子是近邻的M51和NGC5195,M51是旋涡星系,星系盘几乎正面对着我们,旋臂结构清晰可见,是天空中最美丽的旋涡星系之一,它的近邻NGC5195,侧面对着我们,它的结构受M51的引力作用而畸变,一般归属为不规则星系。可以清楚地看出,M51靠近伴星系的旋臂,受伴星系的强烈扰动作用,显然偏离了正常位置,直奔伴星系而去。其实,NGC5195离我们更远一些,但它在几亿年前曾非常靠近M51,由此造成了两者形状的畸变。在靠近伴星系的M51的旋臂上有特别多的年轻恒星,它们很可能就是两星系靠近时引力对星际云作用的结果,计算机可以很好地模拟这两个星系碰撞的过程,结果发现成百万个恒星会在“碰撞”过程中从星系中拉出去,遗弃在星系际空间,假如太阳就是这种被遗弃在星系际空间的恒星之一,那么地球上看到的夜空就会逊色许多,天上几乎没有什么闪烁的星星,只能看到两个闪亮的星系,一边是巨大的车轮状的M51,另一边是像打破了的盘子似的NGC5195。

新近发生过星系相互作用的另一个例子是M81—M82星系对。M81与银河系差不多大小,离它几万秒差距处就是M82。M82可能是一个把侧面对着我们的旋涡星系,但外形十分奇特,许多亮的和暗的星云状物分布在远离星系盘面的地方,好像星系受到了很强的震动,因此它曾经作为爆发星系的典型例子。现在认为,M82本是一般的小旋涡星系,在两亿年前走近了比它重10倍以上的巨大星系M81,受到了极强的引力扰动,结果使得成百万颗恒星离开了自己原来的位置,同时很多星系际云因坍缩而形成大量年青恒星,也有很多星际云或因受M81吸引或因众多超新星爆发的推动而离开星系盘,当它们在M82的引力作用下重返星系盘时,又会形成大量恒星。天文学家估计,可能在4000万年以前,曾有大量恒星形成,而在星系中心区域,现在还有大量恒星正在形成之中,如果确实如此,那么M81—M82星系对的情况表明,星系中发生的最壮观事件很可能与星系及其近邻星系的相互作用有关。

“鼠尾”星系NGC4038/4039和NGC2623的形状很奇怪。两个星系非常邻近,各自的另一侧都有很长的尾巴,尾巴是由恒星和星际物质组成的,在空间一直延伸到几个星系直径远的地方。

还有一种奇怪的“车轮”环状星系,看起来很像一个烟圈,它占据的空间和银河系一样大,类似的环状星系很多,附近都能找到一个伴星系。

除了尾、环状星系之外,相互作用星系还会出现各种各样有趣的结构。在恒星世界几乎有三分之一的恒星组成双星,但在星系世界显示出相互作用或距离很近的星系对的数目并不太多,已经把这样的星系汇集成表。

怎样理解这些现象呢?其实,这些天体的奇形怪状是潮汐作用的结果。乍一听,似乎很难理解,因为由于月球和地球间的引力造成的潮汐无法在地球背对月球的一侧“长”出一个长长的尾巴来。但是,星系的尺度和质量决不是地月系统所能比拟的,它们之间的引力强得多,结果也就大不相同。当然,真正理解这些现象还是在用大型计算机作了数值模拟之后,托姆尔汀关于互相靠近的两个盘状星系的数值模拟结果最为有趣。

如果两个星系一大一小相互接近,则小星系能从大星系的近侧曳出物质,形成把两个星系联接在一起的“桥”。如果两个质量近似相同的星系在高椭率的椭圆轨道上组成星系对,那么彼此足够接近的时间并不长,但就在接近的期间,两星系靠近一侧的数十亿颗恒星就会从它们原来的轨道上拖曳出来,从而使星系的质量减小。同时,在远离伴星系的另一侧,原来被星系引力曳住的恒星会因星系质量的减小环形星系造成的引力减弱,而被留在星系后面,结果就会逐渐形成长尾巴的星系。

另外一种情形是,如果一个大的星系和一个小的星系或者星系际气体云正面相撞,由于星系内恒星实际上分布得很稀疏,因此相撞的两个星系将会相互穿越而过。但是当两星系因相撞而靠近时,星系中心的恒星数目会因两星系的靠近而增加,中心恒星密度和引力的增加,将使星系外围的恒星向星系中心跑去。当这些外围恒星趋近星系中心时,却发现吸引它们前来的星系靠近的“精彩表演”已经结束。前来相会的另一个星系已经穿越而过,同时也把造成的额外引力带走了,所以这些跑向中心的恒星又会反弹回去,形成一个向外扩张的环。在这个混乱过程中造成的冲击波又会促使星际介质坍缩而形成许多新的恒星,它们使向外扩张的环更加明亮,这就是环状星系形成的过程。