机器人的近代演变

干危险工作和作为玩具用的机器人发展最快,最早使用遥控机械手的一个领域便是搬移放射性物质。本世纪 40 年代,应研究工作需要,建立了保存放射性元素的屏蔽间“热室”,放射性物资置于铅制容器内,可以安全地储

存和运输。但在热室内如何搬动这些材料供使用却成了一个难题。因为材料对人体有害,需要用某种无须人类直接接触材料的方法进行搬运,这就导致“主—从”机械手的发展。在这个系统中,处在放射环境中的“从”机械手模拟热室外面的“主”机械手而运动。

第一只主—从机械手是雷·哥茨等人于 1944 年在美国国家实验室中研制的。在这个系统中,热室内外的主—从手之间由机械联结。操作者直接操纵主手,使之运动,从而驱动从手运动。然而,这种机械手联动时,常常只能使从手做出笨拙而困难的动作,因为操作者无法感知从手与障碍物或对象的碰撞。

1946 年,伯格塔按照美国的第一颗原子弹试验计划——曼哈顿计划的要求,改进了雷·哥茨的设计。1949 年,机械手能够反馈信息,取得巨大的进步。这样,从手所承受的撞击力通过反推主手而传递给操作者,使他“感知” 手与障碍物的碰撞,从而实施更佳的控制。后来,用电气联结取代机械联结, 是机械手又一重大进步。这样用变阻器检验主关节的运动,并将所得的信号传给伺服马达,由马达驱动机械手关节。

机械手的下一个重大进步是有了通讯设备。这种被称为“远程操作器” 的装置终于使外层空间遥控机械手出现了。喷气发动机的实验人员根据美国国家宇航局空间实验的需要,在探索制造一种灵巧且通用的机器的过程中, 对远程操作器的内容作了巨大的扩展。他们认为,这种机器必须对极远距离提供精确的控制。他们最后制造了一种装置,控制者可借控制器和显示器的帮助对其发布指令。此设备可安装在一个遥远的环境中,有执行指令的致动器和反馈信息的传感器。这种传感器可以是电视机,也可以是有听觉、触觉的东西。人和设备之间的距离可以很近,也可以很远。

美国第一个登上月球和火星的机器就是一种远程传感器,它为宇航员登上月球提供了可靠的球面环境信息。然而,在人类操作者和远程操作器之间传递信息所需的时间滞后却成了一个问题。即使对登月舱而言,时间滞后也显得过长,以致某些本来可以进行的试验也无法完成。纵然是 1.3 秒的滞后也会给操作者带来困难和失控,所以有必要扩充计算机用量。例如让宇宙飞船具备当其陷入绝境时能够自动停止飞行的性能。这就需给遥控装置增设计算机与传感器,从而实现所需要的“现场反射”能力。

我们还是以登月试验中的控制问题为例。如果登月舱即将掉进月球上的一个火山口(月球表面布满火山口),而传达停止指令的时间过长,登月舱就可能来不及止步而陷入火山口。为解决这个问题,加州的喷气发动机实验室的科学家们为他们的远程操作器设计出“现场反射”或自律反应环节,这在机器人发展史上是一大进步。正如人类行路时所需的反应多来自脊髓神经的现场反射、而非来自大脑一样,今天智能机器人方面的很多工作就是企图在机器中建立这类现场反应(反射)。由于科技的不断进步,进一步增设了声控传感器,使得今天的远程操作进一步发展了,比如,采用了移动底盘、双臂、力反馈、声反馈、立体视觉、计算机控制和声指令等。

总之,早期机械人的操作机构是相当简单的,它们的运动必须由人来控制。后来,在这些操作机构上增添了计算机控制,扩展了它们的功能,计算机成为这类机械人“机身”的“大脑”。计算机和机械手技术的共同发展, 最终实现了能满足许多困难工作所需的精确运动。但今天的遥控机械手依然很重要,因为有些工作完全可以自动操作,但有的工作人参与部分操作。另

外,对于某些工作很难由人进行全部操作,还需要复杂的控制站。

下面,我们将总结一下机器人学近代史中的重要事件。大家都知道,20 世纪 40 年代,第二次世界大战促成了美国、英国、前苏联等国政府和企业、科研单位前所未有的紧密合作,其成果也令人惊叹。这是历史发展的一个辉煌时期,因为正是这些合作,发明了现代通讯技术、雷达、声纳、汽车、飞机和船舶,或者使它们有了重大进步。更令人惊叹不已的是,计算机和原子弹出现了。

1940~1942 年,美国哈佛大学制成了第一个自动控制器。1943~1948 年,宾夕法尼亚大学建造了第一台电子计算机。它完全不像今天我们看到的计算机那么精致,而是装满整整一个房间的硬件,因此它在很多方面的应用极不方便。在这个时候(1948),贝尔电话实验室发明了晶体管。同一年, 英国剑桥大学制成第一台可储存程序的计算机。

此时把计算机的功能引进机器已成为可能,所以一些著名科学家便设想将计算机的智能同机器的机械功能结合起来。沙能便是这些科学家中的一员。1952 年,他发明了一只机械鼠,它可以学会做迷宫游戏。

1952 年,美国国际商用机器公司(IBM)的新型计算机问世,宣告了计算机时代的到来。1956 年,数控机床出现了。这种机床采取脱机编程方式, 用穿孔纸带存储对机床的指令。穿孔带上的指令读入机床后,即可执行程序操作。1959 年,美国制造了第一台商品工业机器人,这是一台用凸轮和限位开关控制的提卸装置。1961 年,美国又生产了第一台伺服控制工业机器人。同年,塑料及电子方面的工作成就又把假肢技术推进了一步,在美国林肯实验室里,人们把一个装有触觉传感器的远程操作器的从手同一个计算机联接起来。这个早期试图联接计算机和机械手的探讨为后来的机器人的发展铺平了道路。

1963 年,美国机器和铸造公司(AMF)制出产业机器人。从这一年开始, 又出现了为机器人配备各种手臂的设计。

在此期间,其他国家(特别是日本)也认识到工业机器人的重要性。从1968 年开始,日本的机器人制造业取得了惊人的进步。

1969 年,美通用电气(GE)公司为美陆军建造的实验行走车是机器人一项非同凡响的发展。其控制难度实非人力所能及,从而促进了自动控制研究的深入发展。该行走车的四腿装置所要求的为数极多的自由度是控制的主要课题。同年波士顿机械臂出现了。第二年又有斯坦福机械臂问世,后来还装备了摄像机和计算机控制器。而且,随着这些机械被用作机器人的操作机构, 机器人学开始取得若干重大进展。1970 年,美国第一次全国性的机器人学术会议召开。1971 年,日本成立工业机器人协会以推动机器人的应用。随后推出第一台计算机控制机器人。它被誉为“未来工具”,即 T3 型的机器人,可力举超过 100 磅重的物体,并可追踪在装配线上的工件。

仅美国而言,在短短的二十几年内,机器人的拥有量就从 0 增加到 6000 台。如小河奔腾汇入大江,机械、电气和工业技术的高度发展与融合,终于形成了现代化的工业机器人群体。由于智能机器人的发展将赋予这类机器更为广泛的通用性和超人的功能,今后机器人的拥有量会以惊人的速度持续增长。科学终于把古人的幻想变为现实。可以有把握地推测,机器人在未来的发展,将超出我们的想象。计算机正在逐年地向小型、新颖和廉价方向发展。随着时间的推移,机器人会不会也走这条路呢?现在,电子学、计算机、控

制和能源系统方面的新成果将为机器人的设计提供更为有效的手段。专用机器人在机械工程方面的应用将是永无止境的。机器人将在人类认识自然、改造自然的斗争中发挥巨大的作用。

机器人的划界工业机器人 灵活的手

第一代机器人,它的伟大之处,是它具有这样的能耐:成功地模拟人的运动能力。比如,它们会拿取、举起、拆除、翻转一些东西,会自己进行这些运动。特别是在现代工业中,它们学会了喷漆、磨削、焊接、切割、包装、打印商标、对物品分类、拣出废品,有的机器人甚至能修剪、绘画、弹竖式钢琴和雕刻某些图像。

它们当然是在向人类学习啦。人手臂上有 52 对筋肉,腿脚上有 62 对筋

肉,颈部有 15 条筋肉,因此人能够做出各种极其复杂的动作。仅就手臂而言,

人就有 27 个自由度。但模仿人运动的机器人,它们不需要这么多的运动功能。现代的机械手总共有 6~8 个自由度。

每一个工业机器人都由两个主要部分组成:机械手和程控器。机械手完成全部必需的动作,程控器则进行全部必需的控制。前者是机器人的“身躯” 和“手”,后者是它的“大脑”。其身躯一般是粗大的基座,或称机架;机器人的手则是多节杠杆机械——机械手。要让手能够作出预先规定的动作, 它就要有肌肉——传动机构。肌肉的作用是将大脑发出的信号转换为手的机械动作。机械的手、臂或抓取器的终端是夹具。

大部分工业机器人仅有一只手,但也有的有两三只或更多的手。但其作用几乎相同,重复人或动物的上肢动作或完成其动作。一般说来,机械手是依据三条原则安装设计的。第一条原则——机械模拟人手结构。其关节有: 下臂、肘、腕,均是根据轴向或活关节接合原理做成的。机器人的液压或电动筋肉保证这些关节能活动自如,同动物的关节一样;第二条原则是一些专门的杆可做成水平、垂直和角形的各种线性移动动作,这些移动可确保机器人手具有必要的灵活性;第三条原则是将上述两原则结合起来。

设计机器人的手需要解决大量异常复杂的问题。这里并非仅是考虑模仿人手所具有的功能;有时还考虑让机器人去完成人做不来的事儿。比如,工人用手工加工半成品无法精确到一个微米,但机器人却能顺利地完成这种任务。目前使用的工业机器人具有从几十公斤到三吨以上的起重力,移动自由度 2~6 个以上,定位准确度 0.05~5 毫米,服务区域范围 0.01~10 立方米。不过,这些性能取的都是平均值。比如英国制造了将 12 吨重的轴辊安装在磨床上的机器人。

机器人要运动就需要使其“筋肉”运动。机器人的气动“筋肉”是由气压传动筒组和气动发动机构成的,气压传动筒组用来创造直线运动,气压发动机组用来创造旋转运动。它们利用特殊的气动阀来控制、调整移动速度和使活塞停止做功。这种传动机构相当简单。作用于气压传动筒活塞杆上的力取决于压缩空气的压力,借助于专门阀这个作用力很容易控制。气动肌肉的优点是工作中不出现故障,需要的工作面积小(因为传动机构一般都直接位于机械组合件的结合处),造价低,维修容易。

液压传动机构的运动原理同气动机构相类似。不过是使用液体代替压缩空气罢了。液压传动机构的功率更大,它一般用在最有力量的机器人手臂上

(举重力达数吨)。但是,它要求的保养条件高,否则一旦发生液体泄漏, 就会污染周围环境。

不久以前,电力驱动的机器人数量不是太多;而近来,用电力筋肉的机器人越来越多了。电动驱动提供了启动、停止、转向的优良动力特性,提高了定位精确度(小于一毫米),保证了广泛的机动性。电动传动机构装配和调整容易、方便,维修保护简单,没有噪音。它也用于大多数第二代感觉机器人,这是其优点和实现自调控制算法之间的灵活性决定的。

怎样从机器人的“手相”看出它是干什么职业的呢?很简单。瞧,三钩抓钳,那是吊钩大型铸件用的;吸盘,是吸拿玻璃板用的;铲斗,是装散物质用的;钻头、喷漆枪、自动螺帽扳手⋯⋯器械直接固定在手上,而不是固定在现在已经不需的夹具中。

人类的双手无所不能,机器人“双手”的终端装置同样也是形形色色的。最流行的是像鸟嘴或蟹螯虫一样的“二趾爪”,它可以完成抓取和移送大多数零件。如果要求更牢固地抓住零件,尤其是圆形零件,就要使用三趾爪; 如果零件又粗又长,那就改用多爪抓钩——用几个二趾爪或三趾爪从许多地方同时抓住长管子;输送液体使用斗勺,抓取散体物使用三爪小斗勺;如果零件是很大的平板形的,那就使用类似章鱼身上的吸盘;如果抓取钢件或白铁件,还可以用磁性抓具。如果要抓管型的或空心圆柱体件,则可以用张合的抓爪、特殊的梨状充气器、穿进管子去的小棒子。

除了灵巧之外,机器人的“手”大小也不同:有用以抓取好几吨重的轴辊的大爪子,也有用来同微电子产品和钟表齿轮打交道用的小镊子。有些像胡须一样细的手指需要用显微镜来看,才知道它如何同小小的零件打交道。总之,机器人的“手”可能模仿一切动物的手、爪,甚至为了美观,有

时可能“发育”得更加优雅。但就目前而言,还是仅以实用为主要目的。

学会走路

人们习惯于把机器人所进行的动作分为三类:局部动作、区域动作、总体动作。局部动作——是我们借助于手而进行的各种操作,如抓、放、翻转、插入、取出。区域动作——是运用整条手臂的机械能力来进行的。机器人在基座不动的情况下,将零件从一个地方移到另一个地方。总体动作——是机器人的自身移动。

我们现在来谈谈机器人的整体动作。我们知道,人要整体动作就要有脚, 车子要整体动作也要有“脚”——车轮。机器人要完成总体动作,同样要有“脚”。

给机器人制造脚的历史可以追溯到 19 世纪中叶。俄罗斯数学家切贝绍夫设计出了著名的“百足机器人”。这是由四个希腊字母“λ’形机械结合成的一种机器人。机器人的脚踩到地面时,它就向前平移;脚离开地面,它就在空中沿曲线运动,好像步行者的脚步在空中划出的轨迹。切贝绍夫的后继者使机器人的“脚”模仿人脚或动物蹄爪的动作。前苏联的阿尔托夫斯基在理论上解决了机器人脚的关键性问题。最后,列宁格勒仪表制造研究所的专家们制造出了前苏联最早的步行机器人。这个步行机器人有六只脚,脚上布满了传感器,所以脚在空间的位置以及脚接触平面的情况等数据便能不断地输入机器人的电脑。

“六脚人”走路能快能慢,但始终处于稳定状态。这使四脚机器人保持稳定的问题已变得更加迫切了。美国工程师利斯顿研制的装配着控制器的“四脚马”,在冶金中是能派上用场的,比如,可以将大块的钢坯从热处理车间送到锻压工段和冲压工段。它需要有 300 公斤的起重力。这个机器人靠自整步电动机驱使脚运动,让脚移动的思维借助于现代化的微机。美国宇宙勘探国家管理局为勘查月球表面积,积极研制八脚和六脚运输机械:四只或三只脚用来保持平衡,其余的四只或三只脚用来移动身体。这些机械的外形好像两个联结在一块儿的立着的手提箱。每一个手提箱里都有一个发动机和一些四只脚的铰链机构,迈步时两条腿膝盖朝前,而另外两条腿膝盖朝后,跟动物走路的动作完全一样。此外,较著名的四脚机器人有以下两种:美国通用电器公司制造的运输机械和模仿马的动作的马格结构。

但也有人将目光转向了两脚机器人。如通用电器公司制造的运输模型; 日本早稻田大学伊藤博士正在研制的仿人步行两脚机器人。在这个类人步行机器人身上,采用了专门研制的人造筋肉:这些筋肉是一些柔韧的橡皮软管, 这些橡皮软管联结成一些不大的嘟噜,分成三组。处于通常的松驰状态时, 这些筋肉无力地下垂着。要让筋肉绷紧,只要向里注放压缩空气,这三组筋肉便鼓成圆球。筋肉收缩时,附在筋肉上的腿、脚骨骼就会举起来迈步。

现在,许多国家制造了各种各样的机器人,特别是会步行的机器人。不过,他们的步姿却千姿百态,大异于人类。人在狂奔时忽然被一个东西拦住, 将会被拌倒;而目前的机器人,无论什么时候都处于平衡状态。它们如此稳定,以致于不太灵活。而要让两脚机器人真正成为步行者,却又要帮助它们解决不稳定的问题。美国麻省理工学院的一批研究者正致力于解决这一问题。他们研制出了独立的能跳跃的自控腿。这条腿还装备了微型电子计算机和电源。它的唯一“关节”是膝盖。“脚掌”是一个十字架,十字架可以使脚不歪倒。这条 1.5 米的腿能站立、伸直、朝前迈进并重新抬起来。研究者们想使它朝任意方向跳跃移动。目前,独腿机器人正处于训练阶段。它的计算机自己编制程序,用试验和失误的方法编制出最佳的跳跃方式。脚通过不断发生失误并“记住”自己的失误从而取得经验,步子便会越来越稳。有时它的坚韧不拔很令人感动:它开始是躺在地板上,然后站立起来,缓缓前倾, 做好准备跳跃的姿势。随后“脚掌”一蹬,跳了起来,落地后站立不稳,受到惯性吸引,又向前倾斜,这时它又做好了朝前跳跃的准备。

按规定程序行动

人的手是十分灵巧的。轻、重、冷、热它都可以感觉到并做出相应的动作。为什么呢?就保持身体的平衡而言,内耳前庭发挥了重要的作用。但机器人没有内耳前庭,它怎么会保持平衡呢?如果拿起薄薄的灯泡或精巧的微电子制品,机械手会轻拿轻放吗?

机械手的操作性能是多方面的,动作也特别多。机器人要拿起处于不同距离和不同高度的零件或装配完毕的部件,拐弯抹角地避开障碍物,穿过一些狭窄的孔洞,把一些零件固定在机床、夹子和炉底的需要位置上。机器人需要在生产环节中经常变化的情形下,快速地转来转去。“这有什么呢?给机器造成强壮的身体就是干这些活儿的嘛”,也许有人会这么说。但在机器人学家看来,这是个复杂的“心理学”问题。也就是说,除了一定的力量属

性外,机器人应当便于控制,它们的筋肉能准确地完成“大脑”发出的指令: 放松、收缩、用力。这样,这些筋肉产生的作用力应恰到好处:既能举起物品,又不会弄碎诸如灯泡、电子显象管和微型组件之类的易碎品。如此,就要求机器人的动力传动装置,必须首先是万能而可控的。

人们通过观察自己得到了启发。机器人与人有相似之处。工业机器人是作为能够完成人的某些功能的机器而出现于生产中的。首先,它的任务或者是按照事先规定的路线运送零件和半成品,或者是把零件和半成品从一个指定的空间点运到另一个指定的空间点。观察人在把手伸到一个确定位置的类似动作,可以将这种动作分解成两个主要阶段:动态阶段——动作快速向目标靠近;静态阶段——急剧减速和更准确地协调方向,通常这种协调伴随着小幅度的摆动动作。运动方向是在不间断的视觉监督和运动学监督下进行的,而最终结果却以触觉与听觉来检验。

第一代现代化工业机器人进行操作时具有上述两个阶段,不过在稳定阶段没有像人在接近端点时的那种搜索摆动动作。这种目标位置坐标要严格固定和准确复制,操作对象应准确地置于程序所规定的位置,并且处于机器人能够拿起的状态。因为第一代机器人是“瞎子”,不会反馈。象“起身”、“闭合直至接触”或“迈右脚”这样的一些指令,每个指令本身就是一套程序。然后,需要把这些指令变成有关筋肉的气脉冲或电脉冲,再由气、电脉冲变成相应的位移、角度和转矩。这一切都是极其精确地完成的。第一代的现代工业机器人定位精度可以达到 0.1 毫米。它们达到这个水平的发展过程是困难的,因为操作者是信息的唯一来源,就像瞎子的向导。如果信息作为工作程序输入机器人的存储器中,机器人便在自动工作状态下完成指定的任务,不需要外界再补充信息了。那么,编制并向机器人存储器中输入程序有几种基本方法呢?

第一,可以把动作程序划分成一些单独的指令和镜头,计算好后,将程序输入机器人的存储器中。第二,可以通过按电钮或摇手柄的方法,从操作台上用手控制机器人“示范地”完成一次任务。第三,抓着机器人的机械手, 领着它经过轨迹上所有必须经过的点,教会机器人需要做的动作。按照第一种原理设计的程序,很像电子计算机的程序。不过,电子计算机的数据地址和数字运算、逻辑运算指令换成空间点“地址”和“操作工序”指令,如: 手向右(左)转,伸出——收回,举起——放下,打开夹具——夹紧,手向左右转动,等等。程序就是这样一套指令,并周期地完成必要的次数。按照第二种原理进行训练,是“实时程序设计”。操作人借助于机器人控制台上的手柄和按钮,迫使机器人完成这些或那些动作。这些动作统统存入机器人的存储器中,需要重新做多少次就重新做多少次。第三种训练方法有点像训练小孩。有经验的焊接工人可以拿着固定在机器人手上的焊枪教机器人沿焊缝的最佳线进行焊接。机器人把动作存储在存储器里,兴致勃勃地干起来。受过训练的机器人在大脑控制下独立工作,因为动作程序已经存在它的存储器里了。

最简单的机器人运用循环控制系统。动作是“从支点到支点”来实现的。这种控制系统的程序携带者是布满插头的特殊磁鼓。需要重复动作的时候, 磁鼓就转过来,插头接通传动装置,传动装置就“开动”整个系统。这种控制系统叫做“位置式”。位置式的控制系统是凭借磁带录音机,全部的电磁脉冲都录在磁头上。这些脉冲发出传动,机器人的手便沿着规定的路线活动。

但上述方法中的第一种,是机器人程序设计的“先进”方法,编制机器人的程序像编制电子计算机的程序一样。问题在于机器人这种程序编制可以交给另一个电子计算机来进行。如果编制程序是“批量生产”的话,这样做效益是相当高的。

真有能耐

第一代机器人能做点什么呢?这个问题看起来不怎么好回答,实际上却又是一个比较容易找到答案的问题。

第一代机器人具有经济效益,其应用范围是十分广阔的。它们能卓有成效地照看机床、熔炉、冲床、生产线、焊机、铸造机等。它们还能有效地安装、运输、包装、焊接、装配、加工(热加工、机械加工)产品,在机械制造业和冶金业中的应用尤为广泛。

现在大概没有任何一个工业生产部门没有用过机器人的。一经使用它们,该行业定会声名大震。不过,第一代机器人在汽车工业中的使用量是最多的。如前苏联的伏尔加汽车厂、利哈乔夫汽车厂、列宁共青团汽车厂,不仅使用机器人,而且还自己制造工业机器人和全套自动化设备。欧洲的菲亚特公司,从 1973 年开始从事研究在焊接作业中使用机器人的问题——焊接

132 型汽车车体。由于使用机器人证明经济效益显著,1975 年建成 131 型汽车的焊接生产线。试验结果表明,使用机器人进行焊接的废品率大大低于通常的万能焊机。不过,使用机器人要求装配准备阶段的工作相当精确。车体在“定位焊”之后,立即通过自动检验处进行检验。在 131 型汽车车体制造

完成工段,有 23 个“尤尼梅特”型焊接机器人,它们一小时内在 50 个汽车

车体上完成 620 个焊接点,也就是说每个机器人一小时完成一个工人一个班内的工作量。装配四个门或两个门的车体是在一个传送线上完成的。这是唯一更换程序的地方。如果在一条传送线上进行两三种不同形状的车体的生产,机器人必须具备相应的能力。但是,在菲亚特公司暂时还没有这种机器人。

这条焊接生产线的 23 个机器人中有两个起初是备用的。以便工作机器人中有哪个损坏不能使用时好替换。这两台机器人都编制了按任何一种程序进行工作的程序。

公司的专家们认为,机器人的平均效率达到 94%,而“多枪焊接”自动机的效率为 80%左右。虽然后者在单位时间内的工作效率比机器人高,但当它们出现故障时,整条流水线便会中断。而某个机器人受损停止工作时,流水线却照样能继续工作,因为退出工作的机器人的工作可以由旁边的机器人承担。

菲亚特公司的专家们进一步指出,“尤尼梅特”型机器人具有非常高的可靠性。在整个五年的使用期限内没有更换过一台机器人。不过这里必须强调一下,不更换的条件之一是因为对机器人的保修好。机器人程序的可编性, 使公司的产品能够迅速适应市场的变化。公司进一步注意到使用机器人了的好处。到 1976 年时,公司已使用 90 个机器人,其中 23 个用于焊接,67 个基本上用于机械运输。为扩大机器人的使用范围,进行了成对使用机器人进行焊接的试验。其中一个机器人把待焊接的钢板拼在一起,另一个机器人急忙进行点焊。

在日本,各大汽车垄断企业也广泛地使用工业机器人。在美国,通用动力公司使用机器人制造飞机机身,通用电力公司则用机器人生产冰箱。这种机器人也用于原子工业中,它们跟放射性材料打交道,使人摆脱了这种危险的工作。

在前苏联,机器人还有一个十分古怪的工作,比如烤面包。莫斯科第十面包厂就使用机器人烤面包。⋯⋯车间里“黑面包河”旁边是“鲍罗季诺” 面包河,再远一点是“奥廖尔”面包河,在成为三条面包“河”发源“地” 的车间里安装了一个自动化综合体,这个综合体为另一条面包河——“新乌克兰”面包河奠定了基础,机器人在这里找到了自己的第一个工作岗位。这个机器人跟自动化综合体一样,是同一个单位研制的。我们来看它如何干活吧。操作员检查烤炉里的温度,仪表显示:热烘机组做好了接受包模的准备。接通起动器,复杂的自动化综合体的众多部件便运转起来。喷油嘴便将乳状油液喷在包模上。继电器“啪”地响了一声,面包模传送带立即停下。机器人好像在等待这个瞬间。它用 14 秒钟装填和好的面,然后发出启动传送带的指令。接着将称好的面包填进新的面包模里,然后向传送带再一次发出指令。两个小时后,从烤炉中送出来了第一批“机器人”面包。运用机器人带来了显著的经济效益:在同样的生产面积上,面包的产量一昼夜可以增加 10 吨; 降低了植物油的消耗,劳动条件也得到了改善。

总之,机器人正逐渐地走进我们的生活,还有些活儿,也是机器人干的, 我们还没有全说到呢!但这里由于篇幅有限,我们就不说了。但也许有人会问:“这些铁家伙这么能干,难道就没有它们干不了的事情么?”——当然有!要么人们为什么要去发展第二、第三代机器人呢?。