FLASH BURN

As already stated, a characteristic feature of the atomic bomb, which is quite foreign to ordinary explosives, is that a very appreciable fraction of the energy liberated goes into radiant heat and light. For a sufficiently large explosion, the flash burn produced by this radiated energy will become the dominant cause of damage, since the area of burn damage will increase in proportion to the energy released, whereas the area of blast damage increases only with the two-thirds power of the energy. Although such a reversal of the mechanism of damage was not achieved in the Hiroshima and Nagasaki bombs, the effects of the flash were, however, very evident, and many casualties resulted from flash burns. A discussion of the casualties caused by flash burns will be given later; in this section will be described the other flash effects which were observed in the two cities.

The duration of the heat radiation from the bomb is so short, just a few thousandths of a second, that there is no time for the energy falling on a surface to be dissipated by thermal defusion; the flash burn is typically a surface effect. In other words the surface of either a person or an object exposed to the flash is raised to a very high temperature while immediately beneath the surface very little rise in temperature occurs.

The flash burning of the surface of objects, particularly wooden objects, occurred in Hiroshima up to a radius of 9,500 feet from X; at Nagasaki burns were visible up to 11,000 feet from X. The charring and blackening of all telephone poles, trees and wooden posts in the areas not destroyed by the general fire occurred only on the side facing the center of explosion and did not go around the corners of buildings or hills. The exact position of the explosion was in fact accurately determined by taking a number of sights from various objects which had been flash burned on one side only.

To illustrate the effects of the flash burn, the following describes a number of examples found by an observer moving northward from the center of explosion in Nagasaki. First occurred a row of fence posts at

the north edge of the prison hill, at 0.3 miles from X. The top and upper part of these posts were heavily charred. The charring on the front of the posts was sharply limited by the shadow of a wall. This wall had however been completely demolished by the blast, which of course arrived some time after the flash. At the north edge of the Torpedo works, 1.05 miles from X, telephone poles were charred to a depth of about 0.5 millimeters. A light piece of wood similar to the flat side of an orange crate, was found leaning against one of the telephone poles. Its front surface was charred the same way as the pole, but it was evident that it had actually been ignited. The wood was blackened through a couple of cracks and nail holes, and around the edges onto the back surface. It seemed likely that this piece of wood had flamed up under the flash for a few seconds before the flame was blown out by the wind of the blast. Farther out, between 1.05 and 1.5 miles from the explosion, were many trees and poles showing a blackening. Some of the poles had platforms near the top. The shadows cast by the platforms were clearly visible and showed that the bomb had detonated at a considerable height. The row of poles turned north and crossed the mountain ridge; the flash burn was plainly visible all the way to the top of the ridge, the farthest burn observed being at 2.0 miles from X.

Another striking effect of the flash burn was the autumnal appearance of the bowl formed by the hills on three sides of the explosion point. The ridges are about 1.5 miles from X. Throughout this bowl the foliage turned yellow, although on the far side of the ridges the countryside was quite green. This autumnal appearance of the trees extended to about 8,000 feet from X.

However, shrubs and small plants quite near the center of explosion in Hiroshima, although stripped of leaves, had obviously not been killed. Many were throwing out new buds when observers visited the city.

There are two other remarkable effects of the heat radiated from the bomb explosion. The first of these is the manner in which heat roughened the surface of polished granite, which retained its polish only where it was shielded from the radiated heat travelling in straight lines from the explosion. This roughening by radiated heat caused by the

unequal expansion of the constituent crystals of the stone; for granite crystals the melting temperature is about 600 deg centigrade. Therefore the depth of roughening and ultimate flaking of the granite surface indicated the depth to which this temperature occurred and helped to determine the average ground temperatures in the instant following the explosion. This effect was noted for distances about 1 1/2 times as great in Nagasaki as in Hiroshima.

The second remarkable effect was the bubbling of roof tile. The size of the bubbles and their extent was proportional to their nearness to the center of explosion and also depended on how squarely the tile itself was faced toward the explosion. The distance ratio of this effect between Nagasaki and Hiroshima was about the same as for the flaking of polished granite.

Various other effects of the radiated heat were noted, including the lightening of asphalt road surfaces in spots which had not been protected from the radiated heat by any object such as that of a person walking along the road. Various other surfaces were discolored in different ways by the radiated heat.

As has already been mentioned the fact that radiant heat traveled only in straight lines from the center of explosion enabled observers to determine the direction toward the center of explosion from a number of different points, by observing the "shadows" which were cast by intervening objects where they shielded the otherwise exposed surface of some object. Thus the center of explosion was located with considerable accuracy. In a number of cases these "shadows" also gave an indication of the height of burst of the bomb and occasionally a distinct penumbra was found which enabled observers to calculate the diameter of the ball of fire at the instant it was exerting the maximum charring or burning effect.

One more interesting feature connected with heat radiation was the charring of fabric to different degrees depending upon the color of the fabric. A number of instances were recorded in which persons wearing clothing of various colors received burns greatly varying in degree, the degree of burn depending upon the color of the fabric over the skin in question. For example a shirt of alternate light and dark gray stripes,

each about 1/8 of an inch wide, had the dark stripes completely burned out but the light stripes were undamaged; and a piece of Japanese paper exposed nearly 1 1/2 miles from X had the characters which were written in black ink neatly burned out.