CHAPTER XI.
PLANE AND RUDDER CONTROL.
Having constructed and equipped your machine, the next thing is to decide upon the method of controlling the various rudders and auxiliary planes by which the direction and equilibrium and ascending and descending of the machine are governed.
The operator must be in position to shift instantaneously the position of rudders and planes, and also to control the action of the motor. This latter is supposed to work automatically and as a general thing does so with entire satisfaction, but there are times when the supply of gasolene must be regulated, and similar things done. Airship navigation calls for quick action, and for this reason the matter of control is an important one-- it is more than important; it is vital.
Several Methods of Control.
Some aviators use a steering wheel somewhat after the style of that used in automobiles, and by this not only manipulate the rudder planes, but also the flow of gasolene. Others employ foot levers, and still others, like the Wrights, depend upon hand levers.
Curtiss steers his aeroplane by means of a wheel, but secures the desired stabilizing effect with an ingenious jointed chair-back. This is so arranged that by leaning toward the high point of his wing planes the aeroplane is restored to an even keel. The steering post of the wheel is movable backward and forward, and by this motion elevation is obtained.
The Wrights for some time used two hand levers, one to steer by and warp the flexible tips of the planes, the other to secure elevation. They have now consolidated all the functions in one lever. Bleriot also uses the single lever control.
Farman employs a lever to actuate the rudders, but manipulates the balancing planes by foot levers.
Santos-Dumont uses two hand levers with which to steer and elevate, but manipulates the planes by means of an attachment to the back of his
outer coat.
Connection With the Levers.
No matter which particular method is employed, the connection between the levers and the object to be manipulated is almost invariably by wire. For instance, from the steering levers (or lever) two wires connect with opposite sides of the rudder. As a lever is moved so as to draw in the right-hand wire the rudder is drawn to the right and vice versa. The operation is exactly the same as in steering a boat. It is the same way in changing the position of the balancing planes. A movement of the hands or feet and the machine has changed its course, or, if the equilibrium is threatened, is back on an even keel.
Simple as this seems it calls for a cool head, quick eye, and steady hand. The least hesitation or a false movement, and both aviator and craft are in danger.
Which Method is Best?
It would be a bold man who would attempt to pick out any one of these methods of control and say it was better than the others. As in other sections of aeroplane mechanism each method has its advocates who dwell learnedly upon its advantages, but the fact remains that all the various plans work well and give satisfaction.
What the novice is interested in knowing is how the control is effected, and whether he has become proficient enough in his manipulation of it to be absolutely dependable in time of emergency. No amateur should attempt a flight alone, until he has thoroughly mastered the steering and plane control. If the services and advice of an experienced aviator are not to be had the novice should mount his machine on some suitable supports so it will be well clear of the ground, and, getting into the operator's seat, proceed to make himself well acquainted with the operation of the steering wheel and levers.
Some Things to Be Learned.
He will soon learn that certain movements of the steering gear produce certain effects on the rudders. If, for instance, his machine is equipped with a steering wheel, he will find that turning the wheel to the right turns
the aeroplane in the same direction, because the tiller is brought around to the left. In the same way he will learn that a given movement of the lever throws the forward edge of the main plane upward, and that the machine, getting the impetus of the wind under the concave surfaces of the planes, will ascend. In the same way it will quickly become apparent to him that an opposite movement of the lever will produce an opposite effect--the forward edges of the planes will be lowered, the air will be "spilled" out to the rear, and the machine will descend.
The time expended in these preliminary lessons will be well spent. It would be an act of folly to attempt to actually sail the craft without them.